

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

PC104 CONTROL ENVIRONMENT DEVELOPMENT AND USE
FOR TESTING THE DYNAMIC ACCURACY OF THE

MICROSTRAIN 3DM-GX1 SENSOR

by

Jonathan Shaver

June 2007

 Thesis Advisor: Xiaoping Yun
 Co-Advisors: Matthew Feemster
 Douglas Fouts

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE PC104 Control Environment
Development and Use for Testing the Dynamic Accuracy
of the MicroStrain 3DM-GX1 Sensor
6. AUTHOR(S) Jonathan Shaver

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

There is a need for a standard, accurate test bench for inertia-based orientation

sensors. Static accuracy testing of these sensors is straightforward but dynamic
accuracy testing is more difficult. A test bench system is developed with encoders and
a PC104 computer under the QNX Neutrino real-time operating system. A MicroStrain 3DM-
GX1 inertial sensor was used as the sensor to be tested. The dynamic error of this
sensor was accurately recorded and found to be a function of the sensor velocity and
acceleration.

15. NUMBER OF
PAGES

133

14. SUBJECT TERMS PC104, MicroStrain, 3DM-GX1, 16-Bit absolute
encoder, Controls environment, inertia-based orientation sensor

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

PC104 CONTROL ENVIRONMENT DEVELOPMENT AND USE FOR TESTING
THE DYNAMIC ACCURACY OF THE MICROSTRAIN 3DM-GX1 SENSOR

Jonathan A. Shaver

Ensign, United States Navy
B.S., United States Naval Academy, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
JUNE 2007

Author: Jonathan Shaver

Approved by: Xiaoping Yun
Thesis Advisor

Matthew Feemster
Co-Advisor

Douglas Fouts
 Co-Advisor

Jeffery B. Knorr
Chairman, Department of Electrical and
Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There is a need for a standard, accurate test bench for

inertia-based orientation sensors. Static accuracy testing

of these sensors is straightforward but dynamic accuracy

testing is more difficult. A test bench system is developed

with encoders and a PC104 computer under the QNX Neutrino

real-time operating system. A MicroStrain 3DM-GX1 inertial

sensor was used as the sensor to be tested. The dynamic

error of this sensor was accurately recorded and found to be

a function of the sensor velocity and acceleration.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. MOTIVATION ...1
B. GOALS ..3
C. CHAPTER DESCRIPTIONS3

II. PLATFORM INTRODUCTION5
A. THE PC104 ..5

1. Introduction5
2. Background5
3. Prometheus PC1046

B. THE QNX OPERATING SYSTEM9
1. Introduction9
2. QNX Neutrino RTOS v.6.2.1A10

III. THE APPARATUS ..17
A. HOST MACHINE17
B. TARGET MACHINE – PROMETHEUS PC10418

1. Unidirectional Input Devices18
2. Unidirectional Output Devices18

a. Boot Completion Indicator19
3. Bidirectional Input/Output Devices23

a. Ethernet Port and IP Address23
b. RS-232 Serial Port23
c. Data Acquisition Circuit24

C. MICROSTRAIN SENSOR27
1. Background Information27
2. Specifications29
3. Communications31
4. Acquiring Data – Gyro Stabilized Euler Angles 33
5. Calculation Cycle Information37

D. ENCODERS ..39
1. 10-Bit Encoder40
2. 16-Bit Absolute Encoder41

E. THE PENDULUM50
IV. TEST ...53

A. SETUP ...53
1. Ethernet and Associated Setup Procedures54
2. RS-23257
3. Digital Input/Output57

B. ACQUISITION PROGRAM FOR THE 16-BIT ENCODER60
1. Main Function61
2. The Interrupt Service Routine77
3. 10-Bit Encoder Program Differences81

 viii

C. RESULTS ...82
V. CONCLUSIONS AND RECOMMENDATIONS99

A. CONCLUSIONS99
B. RECOMMENDATIONS100

APPENDIX A: 16-BIT ENCODER C++ CODE101
APPENDIX B: CONTROL.WSE CODE105
LIST OF REFERENCES ...113
INITIAL DISTRIBUTION LIST115

 ix

LIST OF FIGURES

Figure 1. Prometheus PC104 Block Diagram [From Ref. 5].....8
Figure 2. Actual PC104 Used in the Project.................9
Figure 3. LED Circuit for boot completion indicator.......20
Figure 4. Boot Completion Indicator.......................22
Figure 5. Data Acquisition Block Diagram [From Ref. 5]....26
Figure 6. MicroStrain 3DM-GX1 Sensor......................28
Figure 7. Grey Code to Binary Pseudo Code [From Ref. 13]..40
Figure 8. A58 16-Bit Encoder and Attachment...............41
Figure 9. Male plug of the encoder........................47
Figure 10. Timing Diagram of A58 Encoder [From Ref. 14]....48
Figure 11. The Pendulum....................................52
Figure 12. Block Diagram of Setup of test system...........53
Figure 13. Actual Experiment Setup.........................54
Figure 14. 10-Bit Encoder and 3DM-GX1 Sensor Results. The

absolute difference is magnified by a gain of
20 in the plot..................................84

Figure 15. Zoomed View of 10-Bit Encoder and 3DM-GX1
Results...86

Figure 16. Un-shifted Encoder and MicroStrain Sensor Data..88
Figure 17. One Foot Pendulum Data. The absolute difference

is multiplied by a gain of 20...................89
Figure 18. Zoomed View of One Foot Plot. The velocity has

a gain of 20 and the absolute difference has a
gain of 60......................................91

Figure 19. Two Foot Pendulum Data. The absolute difference
is multiplied by a gain of 20...................92

Figure 20. Zoomed View of Two Foot Plot. The velocity has
a gain of 20 and the absolute difference has a
gain of 60......................................93

Figure 21. Three Foot Pendulum Data. The absolute
difference is multiplied by a gain of 20........95

Figure 22. Zoomed View of Three Foot Plot. The velocity
and the acceleration both have a gain of 20 and
the absolute difference has a gain of 60........96

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. MicroStrain 3DM-GX1 Specifications [From Ref.
9]..30

Table 2. 3dM-GX1 Default RS-232 Format [From Ref. 10]....31
Table 3. Command Set Summary for MicroStrain 3DM-GX1

[From Ref. 10]..................................35
Table 4. Gyro-Stabilized Euler Angles Date Output Format

[From Ref. 10]..................................36
Table 5. 3DM-GX1 Clock Cycles per Calculation Type [From

Ref. 11]..38
Table 6. 3DM-GX1 Total Calculation Time per Type [From

Ref. 11]..39
Table 7. A58 16-bit Encoder Specifications [From Ref.

14]...45
Table 8. Pin Assignment of Encoder Exit Cable [From Ref.

14]...46
Table 9. 10-Bit Encoder Pin-Pin Connection Table.........58
Table 10. 16-Bit Encoder Pin-Pin Connection Table.........59

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to thank my wife, Jillian Shaver, for

helping me through this project in every non-technical way

possible and always being there for me when I needed her. I

would not have had the strong drive and motivation to work

hard without her little pushes to keep me on track.

I would also like to thank Dr. Yun and James Calusdian

for being there to answer all my questions and helping me in

a great way with all the problems I encountered throughout

my thesis. Dr. Yun has been a great teacher and mentor

during my time at the Naval Postgraduate School. James was

always there to help with any technical problems I

encountered. He was quick to drop his own work to help me

with problems and he thought nothing of working outside of

normal working hours to build various pieces required for

this project setup.

Dr. Feemster helped push me in the direction of

attending the Naval Postgraduate School while I was

attending the United States Naval Academy. With his help

and dedication I was able to receive an invitation to attend

the Naval Postgraduate School, for that I would like to

thank him. He was also the starting motivation for this

thesis idea.

I would like to thank Dr. Fouts for being a co-advisor

on this project. I would finally like to thank my family,

Grandma and Grandpa Shaver, Grandpa Jackson and Shirley

Russell, “Granny,” for their unending support in my journey

to where I am today. It would not have been possible

without them.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARRY

The purpose of this project was to develop a control

systems environment complete with encoder capabilities on a

PC104. This system’s capabilities were tested by using it

to measure the dynamic accuracy of the MicroStrain 3DM-GX1

orientation sensor against the benchmark of an encoder. The

digital input/output and the digital-to-analog conversion

circuits and the RS-232 port of the PC104 were used to

accomplish this task.

In this project, a Diamond Systems Prometheus PC104

with a data acquisition circuit was used as a target

machine. The main encoder used was a 16-bit absolute

encoder by Gurley Precision Instruments. The encoder

communication and control was performed with the digital

input/output circuit. The MicroStrain 3DM-GX1 sensor

communications all occurred through the RS-232 port. The

MicroStrain sensor was attached to the end of a wooden

pendulum and the encoder served as the pivot point of this

pendulum. This allowed the angles of the two sensors to

move synchronously with one another. The pendulum was set

in motion and the position of the two sensors were recorded

and output to a MATLAB compatible file.

The results yielded an error of the MicroStrain sensor

well within the specifications established by the company.

The worst error was 1.3019° when the pendulum was at a

length of one foot. It was discovered that the error is a

function of the velocity, acceleration, and flexure of the

pendulum.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

The motivation for this thesis originates from two

different driving sources, the need for a PC104 controls

environment at the United States Naval Academy and the need

for a standard, accurate test bench for inertia-based

orientation sensors.

Currently, the United States Naval Academy Systems

Engineering Department uses the Rabbit 2000 microprocessor

as a control systems platform. This system has many

limitations that create the need for a newer, more powerful

system. The first major limiting factor of the embedded

systems the school currently has is the limit of control

routine execution rate. The systems currently used are not

able to execute control routines any faster than

approximately 1 kHz. This speed is fast enough for most

routines used but there are many new routines that could be

executed if the control routine could execute at a faster

rate. Other limiting features include difficulty

interfacing with MATLAB, communication speed, portability,

and minimal data storage. A PC104 with a data acquisition

circuit would be the solution. For this system to be

incorporated into that classroom at the Naval Academy, the

complexities of the inter-circuit and inter-system

programming must first be reduced into simple user-friendly

function calls. A class of functions that operate the

digital to analog converters, analog to digital converters,

digital input/output, and encoder input are necessary.

 2

Without this type of function library the students would

need a much more extensive knowledge base in computer

programming and operation. A complied function library will

allow users with basic computer programming knowledge to

program a complex control routine on the embedded system.

The second source of motivation is more of an industry

wide source. There is a need for a standard, accurate test

bench for inertial sensor units, as Yun and Bachmann

identified in Ref. 1. The MARG project at the Naval

Postgraduate School shows a 9° error between the inertial

sensor and the test bench.[1] The paper in reference 1

indicates the error is greatest during the dynamic motion

periods. One of the problems is the test bench does not

give output of the angle. The test apparatus can only be

set to turn to specific angles. The intermittent position

information is not available. This means the position of

the test bench must be modeled. In the case of reference 1,

the test bench motion is modeled as linear motion. This is

not a correct model because the test bench must accelerate

and decelerate. The lack of this information could be the

cause of the error discovered. Creating a test bench that

is capable of recording or outputting intermittent position

information would eliminate this problem and the error from

this problem would be reduced, allowing the analysis of the

sensor to be more accurate.

The MicroStrain 3DM-GX1 sensor is an inertial-based

orientation sensor that could be used in the project of

reference 1. This sensor has been used in human motion

tracking in other projects[2]. To model and track the

information more accurately the error of the sensor would

 3

have to be known. The MicroStrain company does not

distribute any information about the sensor operation with

respect to the dynamic motion, besides the dynamic accuracy.

It is not known exactly how accurate the sensor is during

motion. Static accuracy can be easily determined by keeping

the sensor still and reviewing the output data. Dynamic

accuracy is harder to measure because the sensor position

has to be measured while in motion. An accurate test bench

system must be created that will allow the position

measurement and the sensor readings to be correlated as

closely as possible. An encoder in conjunction with a fast

and powerful control system would allow this analysis.

B. GOALS

The main goals of the project are:

• Develop a user-friendly controls environment on a
PC104, complete with data input and output.

• Develop and create a test bench for inertia-based
orientation sensor.

• Develop an interrupt service routine that will
service the serial universal asynchronous receiver
transmitter, compatible with the RS-232 standard.

• Test the dynamic accuracy of the MicroStrain 3DM-
GX1 orientation sensor.

C. CHAPTER DESCRIPTIONS

Chapter I is the introduction and motivation for this

project.

Chapter II discusses most platform specific

information. It gives a background and description of the

PC104 used in this project. It also describes the QNX

 4

Neutrino operating system and a short introduction to what a

real-time operating system is and why this project requires

such an operating system.

Chapter III describes in detail all the apparatus used

or developed in the project. It discusses the host machine,

the target PC104 input, output, and boot indication program,

the MicroStrain 3DM-GX1 sensor, the encoders used in the

project and finally the pendulum constructed.

Chapter IV describes all the test related information.

This chapter is where the actual setup of the apparatus is

discussed. A complete description of the data acquisition

program and the attached interrupt service routine is

included. The chapter finishes with plots and explanation

of all the results.

The final chapter, Chapter V, contains the conclusions

and the recommendations for future work.

Appendix A is a complete version of the 16-Bit encoder

program used to record the MicroStrain 3DM-GX1 sensor

dynamic error. The entire code was written in C++.

Appendix B is a complete version of the control.wse

file which contains many of the functions created and used

in this project.

 5

II. PLATFORM INTRODUCTION

A. THE PC104

1. Introduction

The heart of this project is a PC104. It is the system

that controls and records all information needed to make

observations and calculations. The PC104 interacts with the

apparatus to be tested through digital input/output (DIO)

ports, analog to digital converters (ADC), and digital to

analog converters (DAC).

2. Background

The PC104 technology was first created in 1987 by Ampro

Computers.[3] This company was founded in 1983 for the

purpose of manufacturing compact single board computers to

be used in embedded systems. The MiniModule was the first

PC compatible embedded system with the capability of modular

expansion. For the purpose of this thesis PC refers to

Personal Computer, a term and standard developed by the IBM

company. The form factor of the MiniModule is one of the

features that classified it as the first PC104. The actual

board measured 3.6 inches by 3.8 inches, which is now the

PC104 form factor.[3]

Even though the first PC104 was produced in 1987 it was

not a common system in the embedded control industry until

the PC104 Consortium was founded by 12 companies in February

1992.[4] A month later, in March 1992, the PC104 Consortium

 6

published the “PC104 Specifications” which established and

launched the vast popularity of this new standard.[4]

The PC104 gets its name from some of its more

distinguishing specifications. The system is compatible

with any computer compatible with the PC standard introduced

by IBM. The second part of the name is derived from the pin

specification for inter-module communication. There is a

set configuration of 104 pins which enables communication

between the CPU module and any other module.

3. Prometheus PC104

The PC104 used in this project is a Diamond Systems

Prometheus PC104. It was selected because it has a powerful

data acquisition board packed with it. The operating system

is the QNX Neutrino 6.2.1 real-time OS. It has an internal

6 GB hard drive connected to the IDE port. The hard drive

has a separate power supply and is not housed within the

vendor supplied PC104 casing. The hard drive is too large

to fit inside. The OS was loaded onto the hard drive while

it was connected to anther desktop PC. This method of

loading the OS was easier than connecting a CD-ROM directly

to the PC104. Once the OS was loaded, the hard drive was

connected to the PC104.

The specifications of the PC104 were taken directly

from the Prometheus CPU user manual in Ref. 5:

Processor Section

♦ 486-DX2 processor running at 100MHz with co-
processor

♦ Pentium class platform including burst-mode SDRAM
and PCI-based IDE controller and USB

♦ 32MB SDRAM system memory

 7

♦ 50MHz memory bus for improved performance

♦ 2MB 16-bit wide integrated flash memory for BIOS
and user programs

♦ 8KB unified level 1 cache

I/O

♦ 4 serial ports, 115.2kbaud max

♦ 2 ports 16550-compatible, 2 ports 16850-compatible
with 128-byte FIFOs

♦ 2 full-featured powered USB ports

♦ 1 ECP-compatible parallel port

♦ Floppy drive connector

♦ IDE drive connector (44-pin version for notebook
drives)

♦ Accepts solid-state flashdisk modules directly on
board

♦ 100BaseT full-duplex PCI bus mastering Ethernet
(100Mbps)

♦ IrDA port (requires external transceiver)

♦ PS/2 keyboard and mouse ports

♦ Speaker, LEDs

System Features

♦ Plug and play BIOS with IDE autodetection, 32-bit
IDE access, and LBA support

♦ Built-in fail-safe boot ROM for system recovery in
case of BIOS corruption

♦ User-selectable COM2 terminal mode

♦ On-board lithium backup battery for real-time-
clock and CMOS RAM

♦ ATX power switching capability

♦ Programmable watchdog timer

♦ Power surge monitor for fail-safe operation

♦ Zero wait-state capability for flash memory and
PC/104 bus

♦ +5V-only operation

 8

♦ Extended temperature range operation (-40 to
+85oC)

♦ Cable-free operation when used with Diamond
Systems’ PNL-Z32 Panel I/O board

The PC104 also has a data acquisition circuit for I/O

operations. This circuitry communicates with the PC104

through the ISA bus. The circuit diagram of the Prometheus,

which depicts this circuit, is seen in Figure 1. More

details of the data acquisition circuit are discussed in a

later chapter.

Figure 1. Prometheus PC104 Block Diagram [From Ref. 5].

 9

A photo of the actual PC104 used in this project is

seen in Figure 2.

Figure 2. Actual PC104 Used in the Project.

B. THE QNX OPERATING SYSTEM

1. Introduction

The operating system (OS) that was used for this

project was QNX Neutrino Real-Time Operating System (RTOS)

version 6.2.1A. It is bundled with the QNX Momentics

Professional Edition Integrated Development Environment

(IDE). This operating system was chosen because it is a

real-time OS and it was free through an education grant

given by the QNX Software Systems Company.

 10

2. QNX Neutrino RTOS v.6.2.1A

The QNX Neutrino v 6.2 was developed and released in

2002. QNX was founded in 1980 and since then has been the

leader in the industry of real-time microkernel operating

systems.[6] The real-time microkernel aspect of the OS is

vitally important to the application described in this

thesis. A deterministic execution of code under an RTOS

allows the recording and syncing of the measurements between

two different I/O devices to be as close as possible.

One of the main advantages of an RTOS is its

predictability. An RTOS is designed to guarantee the

execution of a computation in a reasonable amount of time if

there are no external influences, such as interrupts. Since

external influences such as interrupts can be disabled, the

programmer has the ability to ensure a deterministic

execution environment by implementing the proper setting.

This may be disabling all interrupts or at least controlling

necessary interrupts. This extent of control ensures that

any delays in a system are not caused by the OS.[7]

The deterministic timing and execution of instructions

relies partly on the scheduling scheme of the OS. A

prioritized system of scheduling must be utilized. Higher

priority items must be allowed to execute before lower

priority items. This is a necessity for an RTOS. This

gives the OS a way to ensure that all real-time sensitive

instructions are actually executed deterministically. A

real-time thread or process would be assigned a higher

priority to ensure that it is executed when it needs to.

The only thing that would be able to potentially interrupt

this execution would be a system call.[7]

 11

Priority inversions must also be controlled in an RTOS.

This is where a high priority thread is trying to use a

resource that is already allocated to a low priority thread

and a medium priority thread is executing. In this case,

the low priority thread would not be allowed to complete and

free the resources until the medium thread resource is

completed first. This would cause many problems with the

system and cause the system to lose its real-time

characteristic. High priority threads are usually threads

designed to run real-time. If the thread has to wait for

lower priority threads to complete first, timing of the high

priority thread would no longer be guaranteed. To ensure a

system is real-time, priority inversion must be controlled

in such a way that a real-time thread will never have to

wait for a lower priority thread. This is either

accomplished by the lower priority thread giving up the

resource or the lower priority thread taking on the higher

priority’s priority through priority inheritance.[7]

Another requirement for a real-time operating system is

for the system to have a periodic division of processor time

that can be allocated to processes. A portion of this time

must be reserved for real-time processes. It must also

ensure that non-schedulable instructions, such as

microkernel calls, must not violate this time limit. When

any instruction executes, whether it is in a kernel call, a

real-time activity, or non-real-time activity, if it takes

more than the predetermined period of time it starts to

affect the characteristics of a real-time system. No longer

are all execution times guaranteed because real-time

processes are not able to execute when expected. This is

true even for other real-time processes. If there are two

 12

real-time processes running at the same time, they must

equally share the time on the processor. If they do not,

one of the processes will start to show non-real-time

characteristics because the execution will not start when

expected. Under an RTOS, programs are designed to run on a

strict schedule because the time between executions is

critical for some particular reason.[7]

Steve Furr develops five critical system requirements

for an RTOS in his paper What is Real Time and Why Do I Need

It? from Ref. 7:

1 The OS must support fixed-priority preemptive
scheduling for tasks (both threads and processes,
as applicable).

2 The OS must provide priority inheritance or
priority-ceiling emulation for synchronization
primitives.

3 The OS kernel must be pre emptible.

4 Interrupts must have a fixed upper bound on
latency.

a. By extension, support for nested
interrupts is required.

5 Operating system services must execute at
apriority determined by the client of the
service.

a. All services on which the client is
dependent must inherit that priority.

b. Priority inversion avoidance must be
applied to all shared resources used by the
service.

Requirement 1 indicates that scheduling must be fixed

priority and preemptive. A scheduling priority is

definitely needed, as discussed earlier. The fixed priority

is a more well-defined requirement. It is required to be

fixed so that there is a set standard and structure for the

 13

programmer to follow when designing a real-time program and

application. This standard fixed priority allows the

programmer to run the program at a known priority, allowing

real-time execution. The second half of this requirement is

also very important. If a lower priority process is taking

too long, or a higher priority process must execute, then

there must be a way for immediate execution. This is

accomplished with the preemptive nature of the scheduling

routine. Preemptive scheduling allows the operating system

to halt a currently running process or thread and execute a

higher priority process or thread, after which it restores

the state of the halted process or thread and it is able to

continue execution. This is important because it is another

characteristic of the OS that ensures the timing guarantee

of an RTOS.

Requirement 2 was discussed earlier in the paper.

Essentially, there must be priority inheritance to avoid a

priority inversion condition.

The third requirement further extends the bounds of the

first requirement. The kernel is a type of layer that

allows interaction between system critical hardware and the

programs. It controls communication between programs and

hardware such as the CPU, memory, and other devices. Since

is it conceivable that many programs will have some type of

interaction with one of these system critical hardware

devices, it makes sense that the kernel must have preemption

capabilities. If a real-time process relies on a kernel

call for proper real-time execution, the kernel must be able

 14

to preempt a currently running process or thread. This

helps to guarantee discrete execution of the real-time

process or thread.

The fourth requirement is needed to limit the invasion

of interrupts. In real-time operating systems, interrupts

are very important. In many applications, interrupts are

used to guarantee the operation is performed at a real-time

pace. This will be the case in this project. The majority

of the program is run by interrupts. If the interrupts are

processed instantly and are not very complicated, the system

will operate at a predictable, deterministic rate. For

interrupts to occur in a real-time OS and not affect the

real-time characteristic, the interrupt handler must respond

quickly. This is the reason to place an upper limit on the

latency.

The final requirement extends the earlier discussion

about priorities of the OS services. Under a real-time OS,

all processes, thread, and operations must execute in a

controlled, deterministic manner.

The QNX Neutrino OS has all of the characteristics.

This means if a program is created and run properly, it will

run in real-time. This is crucial for this project because

the exact time and sensor positions must be recorded. If

there is any delay in the program the time and the position

may not correlate. In this project there are two sensors

being read and correlated with time and position, so it is

even more vital that the program runs in real-time.

The entire program will be written in C++ with the QNX

Momentics IDE. When the programs are compiled they will

execute on the target PC104 system that will be in constant

 15

communication with the host Momentics instance through the

Ethernet connection. Specific aspects of the communication,

the program code, and execution will be discussed in later

chapters.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

III. THE APPARATUS

A. HOST MACHINE

The QNX programming is all performed on a host machine.

This is necessary because the target machine, the PC104,

does not have enough memory to run the QNX Momentics

Integrated Development Environment (IDE). The PC104 only

has 32MBs of RAM and the IDE requires far more than that.

QNX recommends 256MB of RAM. The PC104 uses 19MB of the RAM

just for the QNX operating system to run. When the IDE is

launched on the PC104, the memory is maxed out and the IDE

will quit loading during its startup phase of loading. The

memory is then freed of the partially loaded program. The

target’s processor is only 100MHz which would also limit the

productivity of the system. While processor speed will not

necessarily stop the program from loading or working

correctly, the program will most likely run so slowly that

productivity would be severely limited.

The host machine is a Dell Dimension 8100 with an Intel

Pentium 4, 1.70 GHz processor and 2GB of RAM. It uses a 3-

Com 100 Base-T Ethernet Card for host to target

communication. The only input devices used are a mouse and

keyboard and the only output device used is the VGA output

of the on-board graphics card. This is all exclusive of the

I/O Ethernet card. This Dell system has an on-board

Ethernet card that has been disabled in the BIOS to decrease

the likelihood of hardware conflicts.

 18

B. TARGET MACHINE – PROMETHEUS PC104

The target machine is the PC104 described a previous

chapter. This target machine is the location where all the

developed code is actually run. The QNX Momentics IDE can

be set up to communicate between the host and target

directly through the Ethernet connection.

1. Unidirectional Input Devices

While the PC104 is capable of using a mouse and

keyboard as input this particular setup does not include

either. The purpose of this project is to have a PC104 that

is entirely remote operable. A mouse and keyboard would

serve no purpose in a remote application as the user would

not have access to them. The PC104 does not use the USB

ports because all peripherals are accessed through other

ports.

2. Unidirectional Output Devices

The PC104 does have a VGA adapter card but this card

was not used for any step other than the initial set up of

the PC104. There are some applications where a VGA monitor

may be useful but because this PC104 setup is designed to be

operated in a remote environment, most likely the user will

not be able to be in the same location of the monitor or the

system will not be able to support the monitor. Many remote

applications of this PC104 will not be able to support a

monitor because of the power requirements. Many of the

applications of this PC104 require the lowest possible power

draw of the system. Monitors will increase system power

requirements while not adding much benefit to the system.

 19

If a user is in the same location as the PC104, the user

will be able to remotely log in to the system for

diagnostics. When executing code from the host machine, all

console output is directed to the host machine erasing the

need for a monitor as a console out for program execution.

There is one instance when a monitor would be very

useful, that is the boot phase of the PC104 startup. Since

the PC104 only has a 100 MHz processor, it takes much more

time to boot to the user screen than a modern day personal

computer does. Without a monitor it is very difficult to

know exactly when the machine has finished booting up. A

monitor would obviously be one solution to this problem.

Since this project aims to decrease all power consumption a

new boot completion technique must be used. The solution

was to develop an LED indication of when the system has

finished booting.

a. Boot Completion Indicator

The boot completion indicator output is driven by

the parallel port. For this PC104 the parallel port is set

at location 0x378. The indicator is a set of eight red LEDs

that are driven from the power supplied by the port. Each

LED is driven by one of the eight data output ports of the

parallel port. On a standard 25-pin parallel port the data

output is seen on pins 2-8. Ground can be connected to any

pin between pins 18-25. This project uses pin 18 for

ground. The circuit includes a resistor between the LED and

the positive end of the supply, as seen in Figure 3. The

resistor is there to limit the amount of current that flows

through the LED.

 20

Figure 3. LED Circuit for boot completion indicator.

LEDs have very low internal resistance and without

a resistor an LED could draw enough current to either damage

itself or damage the parallel port hardware. An array of

eight LEDs that are all individually controlled by a

separate output line of the parallel port was the method of

choice because this helps to decrease false indication of

the system state. If only one LED was used there would be a

higher risk involved that either the LED burned out or that

particular data line is faulty. Including all eight

available lines and eight LEDs lowers the risk that the

output, either an LED on or off, of the overall system is

faulty. A completely faulty indication, in the one LED

system or the eight LED system, will decrease system

reliability because the user will not know for sure whether

the system is fully booted or not.

The program that was used to operate this

circuitry is listed below:

1: #include <unistd.h> //for delay()

2: #include <hw/inout.h> //for out8()

3: #include <sys/neutrino.h> //for ThreadCTL()

4:

LED

4.7MΩ

Supply
Voltage

 21

5: int main()

6: {

7: //GAIN ROOT PERMISSION FOR I/O CONTROL

8: ThreadCTL(_NTO_TCTL_IO,NULL);

9: for(int i=0;i<10;i++) //FOR 10 ITTERATIONS

10: {

11: out8(0x378,0); //All LEDS OFF

12: delay(100); //DELAY 100ms

13: out8(0x378,255); //ALL LEDS ON

14: delay(100); //DELAY 100ms

15: }

16: return 1;

17: }

When the program starts it needs to get root

permission to perform I/O operations. This is accomplished

y the call to ThreadCTL() at line 8. This function is

specific to the QNX Neutrino operating system. Once the I/O

permission is obtained the program continues. The for loop

started at line 9 gives the indicator the functionality to

signal exactly when the OS is fully loaded by blinking ten

times. This task is accomplished by the blinking cycle

contained within the for loop. The call to out8(0x378,XXX)

at lines 11 and 13 send an 8 bit output byte to the parallel

port found at location 0x378. The second parameter of the

function is the value of the 8-bit word that is sent. Zero

is binary 00000000, meaning all the LEDs will be off because

all outputs are low (0). Line 13 sends 255 which is

11111111, turning all the LEDs in the array on because all

bits of the parallel port data output are high (1). When

the output is high it outputs 5V, enough to turn the LEDs

 22

on. When the program completes execution, all LEDs are left

on because the last data packet sent to the parallel port

was 255. This constant burning LED array indicates that the

PC104 is fully booted and the user may start executing other

programs. The array in this state can be found in Figure 4.

Figure 4. Boot Completion Indicator.

The LEDs will remain on as long as the user does

not modify the port within a program. The operating

system’s interaction with the parallel port is stopped just

before the start up indicator program is started. The OS

startup script is located at /ect/rc.d/rc.sysinit. To

ensure proper operation of the boot indication program the

line slay devc-par must first be included in rc.sysinit.

This disconnects the OS handle to the parallel port. If

this process is not killed, the OS may interfere with the

 23

proper operation of the program, or the lasting effect of

continuing the LEDs in the on state. The next line that

must be added to rc.sysinit is startind. This line tells

the OS to start the boot completion indicator program

execution. This is how the proper startup of the OS can be

indicated to the user without the use of a monitor.

3. Bidirectional Input/Output Devices

There are four main devices on board the PC104 that are

bidirectional I/O devices. They are the serial

communications device, data acquisition circuit, Ethernet

communications device, and the universal serial bus (USB)

device. The USB ports were not setup or used because they

serve no immediate benefit to the project.

a. Ethernet Port and IP Address

The Ethernet port was established on the target

with a static IP of 192.168.0.2. Creating a static IP

address instead of a dynamic IP address allows the system to

mesh more easily. If the IP of the target was not static,

the user would have to find a way to retrieve the IP

address. With no keyboard or monitor in the system it would

be difficult to retrieve the IP address if it were

dynamically assigned by an outside device. Therefore,

assigning a static IP address is more reliable.

b. RS-232 Serial Port

The PC104 system has four RS-232 serial ports on

the I/O module. Serial port 1 was used for the

communications between the PC104 and the MicroStrain sensor.

The other ports were not needed. The serial port 1 (COM1)

 24

is built into the ZF Micro CPU chip on the PC104 module. It

is a 16550 standard serial universal asynchronous

receiver/transmitter (UART) with a 16-byte first-in-first-

out buffer.[5] Actual communications of this device are

discussed in a later chapter.

c. Data Acquisition Circuit

The data acquisition circuit is part of the

Prometheus PC104 package. This is the device that

performs all of the digital input/output. This circuit is

also capable of analog to digital conversions and digital to

analog conversions. The complete list of specifications are

seen below. This list was taken from the Prometheus User

Manual, Ref. 5.

Analog Inputs
No. of inputs 8 differential or 16 single-ended

(user selectable)
A/D resolution 16 bits (1/65,536 of full scale)
Input ranges Bipolar: ±10V, ±5V, ±2.5V, ±1.25V
 Unipolar: 0-10V, 0-5V, 0-2.5V
Input bias current 50nA max
Maximum input voltage ±10V for linear operation
Overvoltage protection ±35V on any analog input without

damage
Nonlinearity ±3LSB, no missing codes
Drift 5PPM/oC typical
Conversion rate 100,000 samples per second max
Conversion trigger software trigger, internal pacer

clock, or external TTL signal
FIFO 48 samples; programmable interrupt

threshold
Analog Outputs
No. of outputs 4
D/A resolution 12 bits (1/4096 of full scale)
Output ranges Unipolar: 0-10V or user-

programmable
 Bipolar: ±10V or user-programmable
Output current ±5mA max per channel
Settling time 4µS max to ±1/2 LSB

 25

Relative accuracy ±1 LSB
Nonlinearity ±1 LSB, monotonic
Digital I/O
No. of lines 24
Compatibility 3.3V and 5V logic compatible
Input voltage Logic 0: -0.5V min, 0.8V max;

Logic 1: 2.0V min, 5.5V max
Input current ±1µA max
Output voltage Logic 0: 0.0V min, 0.4V max;

Logic 1: 2.4V min, 3.3V max
Output current Logic 0: 12mA max;
 Logic 1: -8mA max
I/O capacitance 10pF max
Counter/Timers
A/D pacer clock 24-bit down counter
Pacer clock source 10MHz, 1MHz, or external signal
General purpose 16-bit down counter
GP clock source 10MHz, 100KHz, or external signal
General
Power supply +5VDC ±5%
Current consumption 0.7A – 1.1A typical
Operating temperature -40 to +85oC
Operating humidity 5% to 95% noncondensing

A block diagram of the data acquisition circuit

can be found in Figure 5.

 26

Figure 5. Data Acquisition Block Diagram [From Ref. 5].

The data acquisition circuit communicates with the

CPU over the PC104 bus. All control and communication to

the circuit is performed through register read and writes,

as the I/O is mapped to registers. All of the registers are

an offset of the base address of the circuit. In the case

of this project the base address is 0x280. I/O time is more

dependent on the hardware of the circuit than the connection

between the circuit and the CPU. Communications with the

DIO port are very fast because there is no extra conversion

circuitry needed for the output. The only ports that will

 27

be used in this project are the digital input/output ports

A, B, and C. The encoders will be attached to and driven by

these lines.

C. MICROSTRAIN SENSOR

1. Background Information

The MicroStrain sensor used in this project is the 3DM-

GX1 Microminiature Sensor created by MicroStrain, Inc. in

Williston, Vermont.[8] The sensor is a three degrees of

freedom orientation sensor. It has a tri-axial angular rate

sensor or rate gyro, three orthogonal magnetometers, three

orthogonal accelerometers, and a temperature sensor. There

is also a 16-bit analog to digital converter and an onboard

microcontroller.[9] This sensor is capable of outputting

orientation in both static and dynamic applications. The

dynamic accuracy is considerably less than the static

accuracy, as can be seen in the next section. A photo of

the sensor can be found in Figure 6.

 28

Figure 6. MicroStrain 3DM-GX1 Sensor.

The sensor is capable of RS-232 and RS-485 serial

output. It is able to output raw data at a rate of

350Hz.[9] It also has the ability to first convert the raw

data into more useful and recognizable forms such as Euler

angles, matrix and quaternion before output. Drift in the

sensor’s data needs to be continually correct due to the

error and drift of the gyro sensors. The error correction

is calculated based on measurements from the accelerometers

and the magnetometers. These two sets of sensors are more

accurate under a static application and this characteristic

is used to calculate the correction.[9]

 29

2. Specifications

The following table is the specification table supplied

by the MicroStrain company.

 30

Table 1. MicroStrain 3DM-GX1 Specifications [From Ref.

9].

 31

One of the main specifications that is very important

to this project is the static and dynamic accuracy, which is

seen in Table 1. The table indicates the static accuracy is

±0.5° and the dynamic accuracy is ±2.0°. This is a

considerable difference. One of the main purposes of this

project is to test this dynamic accuracy. If the sensor is

moving quickly, such as in a human motion tracking

application, the dynamic accuracy has a large impact. A

larger uncertainty range will not allow accurate tracking

and execution of a control routine.[9]

The sensor range in the table is an acceptable range.

In a human limb motion tracking application 300° per second

is more than enough range to capture the normal motion of a

limb. In this project, the pendulum designed and created as

part of the apparatus will not be traveling faster than this

sensor range. It will also not be experiencing any motion

that will create more than ±5G’s of force.[9]

3. Communications

This MicroStrain sensor will be using the RS-232 serial

communications standard for communications with the target

PC104. The default communications protocol is RS-232 with

38.4kbps, no parity, one stop bit, and eight data bits, as

seen in Table 2.

Table 2. 3dM-GX1 Default RS-232 Format [From Ref. 10].

 32

There are two basic modes of communications with the

sensor, polled command mode and continuous mode. Continuous

mode is where the sensor sends out the requested data

continuously after the request by the host. A new data pack

is transmitted by the sensor after every calculation.

Calculations are continuously performed allowing the sensor

to output the data at its maximum rate. The stream of data

will have no gaps because the transmission and calculation

is performed at a set rate by the microcontroller. The host

computer must be able to receive and process data at this

rate or faster because if the host computer is not able to

keep up with the data rate then there will be data packets

that are dropped. If data packets are dropped the process

that is relying on the data from the sensor will not execute

correctly. The user is able to exit this mode of operation

by issuing a stop command.[10]

The second mode of communication between the host and

the sensor is polled mode. This is the default mode the

sensor is started in. It is possible to change this setting

by writing to the EEPROM onboard the sensor. Polled mode is

more interactive with the user. In this mode the host must

send commands to the sensor to request data. The sensor

will then send the data back to the host. This method has

limited accuracy. When the host issues the request for

data, the packet that is sent back is the packet that is

being calculated when the request is received by the sensor.

This means there is a window of uncertainty that spans the

calculation cycle time, which is 13.107ms for the current

configuration of the sensor.[11] This window of uncertainty

is relatively large with respect to the acquisition time of

the encoder. To get the most accurate time the exact

 33

calculation time must be known or the time between data

calculation start and the encoder reading be minimized.

While the polled method could allow encoder reading to be

taken at the exact time the data calculation cycle starts

there is no way to guarantee or control this. The

continuous method does not make it possible to record

encoder position at exactly the data calculation start time

of the MicroStrain sensor but the time between the first

data bit output of the sensor and the calculation start time

is known and can be compensated for. This enables the

possibility to match encoder position with MicroStrain

position based on a time shift of the encoder data.[10]

A third mode of communication is also possible. It is

polling while in continuous mode. While the MicroStrain

sensor is in continuous mode it is possible to also poll the

sensor for a different set of data. This may increase the

calculation time required depending on the data that was

requested. The first set of data that is sent back from the

sensor to the host is the continuous mode data. The polling

mode data requested then follows. The host must be able to

distinguish between the two data packets.

4. Acquiring Data – Gyro Stabilized Euler Angles

Acquiring data is performed in two steps. The first

step is the host must issue a command. The sensor will then

return the corresponding data. The host may have to issue

more than one command to achieve desired results. Once the

sensor is powered up it will automatically start all raw

data calculations and continue these calculations until

power is lost. The default mode is polling mode. In this

case only the command byte must be sent to the sensor. This

 34

tells the sensor which set of data is requested. The entire

list of possible commands is seen in Table 3. When the

sensor finishes the calculation it is performing, assuming

it receives a command, it will return the data in a form

specific to the requested data. This is explained later in

this section. The MicroStrain sensor is capable of storing

up to 15 commands in its buffer. They will be output in

order.[10]

 35

Table 3. Command Set Summary for MicroStrain 3DM-GX1

[From Ref. 10].

To enter continuous mode the host must issue the “Set

Continuous Mode” command, 0x10, followed by the desired data

command, from Table 3. The sensor will respond by sending

the desired data back to the user at a constant rate,

depending on the setup of the sensor. This will continue

 36

until the sensor is reset or the stop command is issued.

The stop command is similar to the command to enter

continuous mode. The host must first issue the “Set

Continuous Mode” command followed by the “Null Command”,

0x00. This will cause the sensor to stop sending data out

continuously. Continuous mode can be re-entered at any time

if desired.

The command that is used in this project is 0x0E “Send

Gyro-Stabilized Euler Angles.” This command gives the roll,

pitch, and yaw of the sensor with respect to the fixed earth

orientation system. The angles are according to the ZYX or

aircraft coordinate system[10]. The format of the returned

data is seen in Table 4.

Table 4. Gyro-Stabilized Euler Angles Date Output

Format [From Ref. 10]

The RS-232 receiver must be able to receive and process

this data fast enough so that no data is lost. The sensor

 37

will continue to send data regardless of whether or not the

receiver is receiving the data. The data in roll, pitch,

and yaw is sent in a raw binary format. The roll and yaw

have possible values ranging between -32768 to 32767,

corresponding to -180° to 180°. The pitch has a range of

-16384 to 16343, corresponding to -90° to 90°. These raw

16-bit numbers must be reformatted by a scaling them by

360/65536 to obtain the correct angle in degrees.[10]

The last four bytes of data sent is very important for

error checking. This helps to ensure all data arrived and

is valid. The “TimerTicks” is the word of data that holds

the value of sensor clock ticks recorded at the beginning of

every calculation cycle. “TimerTicks” is a 16-bit number so

when it reaches 65535 it will rollover to 0 on the next

clock tick. “Checksum” is the reference number for correct

data. The host must add all preceding bytes of data

received together. If this number is equal to the

“Checksum” then the data received is correct. If the

numbers are different, the data is invalid for a list of

possible reasons: interference, incorrect data set, etc. In

the case of command 0x0E, “Send Gyro-Stabilized Euler

Angles”, the “Checksum” would be compared to

0x0E+roll+pitch+yaw+TimerTicks.[10]

5. Calculation Cycle Information

The amount of time between clock ticks is programmable.

The default value is 6.5536msec.[11] This the value used

for this project. The clock will always cycle at this

speed. Not all the calculations will be completed in one

cycle of the clock. It may take as many as 10 clock cycles

to compute the output depending on the desired output and

 38

the clock speed, as seen in Table 5. For this project, at

6.5536 msec per tick, it requires 2 complete timer ticks for

the 0x0E command calculation to complete. As seen, it is

standard for all the command calculation timer ticks at

6.5536 msec to be two ticks. The time could be changed to

10 msec, which would clearly speed up the sample rate, but

if all the sensors are defaulted to 6.5536, it makes more

sense to test at default rather than reset the internal

circuitry of every sensor this apparatus will test.[11]

Table 5. 3DM-GX1 Clock Cycles per Calculation Type

[From Ref. 11]

In the above table, the “T” means that particular

command under that associated time does not have a

guaranteed number of ticks. This is because the timing is

so close to the edge of a timer tick that it can be assumed

it transitions for some time on either side of a timer tick.

Some cycles may take only 1 tick while at other times it may

take 2 ticks. The red and blue cells are highlighted for

purposes of the documentation it was drawn from and they

have no purpose here.

 39

Table 6. 3DM-GX1 Total Calculation Time per Type [From

Ref. 11]

The above table shows the total time for each

calculation cycle in milliseconds. To arrive at these

numbers the clock cycle time is multiplied by the timer

ticks required from Table 5. The “T”, red, and blue cells

are the same as in Table 5. The green cells are the fastest

calculation cycle time for each command. Again, this was

not used because all the default values were used to

standardize the calculations from command to command and

sensor to sensor. The above table shows the calculation

cycle time for the 0x0E command is 13.107 msec. This means

every 13.107msec a new data point can be read. The sensor

outputs data at 76.295 Hz.[11]

D. ENCODERS

There were two encoders used in this project. One was

a 10-bit absolute encoder created by Computer Optical

Products, Inc. The other encoder was a 16-bit absolute

created by Gurley Precision Instruments.

 40

1. 10-Bit Encoder

The first encoder that was used in the project was the

10-bit absolute encoder, CP-350-10GC, manufactured by

Computer Optical Products, Inc. The output is standard +5V

TTL. 50kHz is the maximum data output rate. All data is

output in a 10-bit parallel, grey code form. This requires

a conversion from the grey code to binary code. Once the

output is in binary code it can then be converted to an

angular degree.[12]

There are a number of different methods that can be

used to convert grey code to binary. The following general

formula for the conversion is from Ref. 13:

Bn = Gn·Bn + 1 + Gn · Bn+1

In this project, a short code routine was used for the

conversion. The pseudo code can be seen in Figure 7.

Figure 7. Grey Code to Binary Pseudo Code [From Ref.

13].

 41

This code is clearly for a 12 bit application. For the

purposes of this project the second line “B11=G11” would be

changed to “B9=G9.” All the lines after the second line

would follow the pattern. The resulting binary number will

be able to be converted to degrees by:

DEGREES=BINARYNUMBER*360/1024.

2. 16-Bit Absolute Encoder

The 16-bit absolute encoder was created by Gurley

Precision Instruments located in Troy, NY.[14] A photo can

be found in Figure 8.

Figure 8. A58 16-Bit Encoder and Attachment.

 42

It is a model A58 encoder. The part number is very

important because it describes the encoder’s

characteristics. It is A58S16MBTT05SAT39Q04EN. The

following is the breakdown of the part number and

characteristics[14]:

A58- Model number. It is specific to the Gurley

Company.

S- Shaft type. S indicates a solid shaft.

16- Resolution. It has 16-bit resolution. The

absolute resolution is 5.493x10-3 degrees per

count.

M- Output Format. This encoder uses a multiplexed

parallel output. 8-bits at a time are output,

starting with the least significant 8-bits first.

There are more specific output details later in

this section. Serial output could have been

selected but the DIO can read parallel much faster

and more easily than serial. It only takes 2 read

cycles to acquire all information with parallel

communications while it would take 16 read cycles

to get all the information with serial

communication.

B- Output Code. The output code of this encoder is

binary. It can also be grey code like the 10-bit

encoder. This is not practical for this project

because the DIO ports are read and treated as a

binary number. If grey code were used, a more

time intensive program would have to be written to

take the grey code and convert it into the

 43

corresponding binary number. This is an extra

step that is eliminated if the encoder outputs the

binary number to start.

TT- Output Device. Since this system is using digital

input as the interface with the encoder it makes

most sense to use a TTL signal coming from

encoder. The other signal options would require

extra circuitry to be compatible with the DIO

input device.

05- Voltage. The digital to analog convert on the

PC104 is able to output 05.0 volts which can be

used to drive the encoder.

S- Temperature Range. This system is not intended

for implementation in hazardous situations so a

standard temperature range of 0-70 C is

sufficient.

A- Base type. A is the only option available for this

model. It is a combination synchro flange/face

mount base.

T- Cable Exit. The particular setup of this system

would most easily interface with the encoder if

the cable exited out the top of the unit (back) of

the encoder rather than the side.

39- Cable Length in inches. A different size could

have been selected, but 39” is the standard option

so that is what was selected.

 44

Q- Connector. Q corresponds to a DA-15P type plug.

This is a 15-pin male connector. The pin

assignment and plug diagram can be found later in

this section.

04E- Shaft Diameter. 04E corresponds to a shaft

diameter of 1/4". This size was selected because

the 10-bit encoder set up could already accept a

1/4" diameter shaft.

N- Special Features. There were no special features

ordered.

The overall specifications of the encoder can be found

in Table 7. The far right column is the encoder used in

this project.

 45

Table 7. A58 16-bit Encoder Specifications [From Ref.

14].

 46

The pin assignment of the encoder can be seen in Table

8.

Table 8. Pin Assignment of Encoder Exit Cable [From

Ref. 14].

Signals D0-D7 are data lines for the position data of

the encoder. They carry the byte of data available based on

the requested set. These lines are all output only. DA is

the signal for Data Available and is active low. This

signal is output only and it tells the user when the data on

the data lines is valid. OE1 and OE2 are both input lines

and are both active low. These lines indicate to the

encoder when the user would like which set of data. Only

one of these two lines should be low at a time. OE1 low

indicates to the encoder the user would like the least

significant byte of data. This is bits 0-7 of the encoder

position. When OE2 is low the encoder outputs the most

significant byte of data. This is bits 8-15. When both of

 47

these outputs are put together the 16 bit position of the

encoder is realized. The 0V signal is the reference or

ground signal for the encoder. This should be connected to

the ground of the system. +V is the high voltage input.

For the particular model used in this project the high

voltage is +5V. CASE connects to the casement of the

encoder and is not used in this project.[14]

The connector plug can be seen in Figure 9.

Figure 9. Male plug of the encoder.

The timing diagram of the encoder unit is very crucial

in understanding how the encoder unit works as a whole. The

timing diagram can be seen in Figure 10. The diagram shows

lines OE1, OE2, DA, and D0-D7 with T1=80±10µs, T2≥300ns,

T3≥300ns, and T4≤200ns.[14]

87654321

1514131211109

 48

Figure 10. Timing Diagram of A58 Encoder [From Ref. 14].

These are the steps that must be followed to acquire

data from the encoder:

1. OE1, OE2, DA are all high. D0-D7 are usually low,

but this is not guaranteed. They are in an unknown

state, Z in the timing diagram. When in this

unknown state the data available on the lines is not

valid.

2. User must take OE1 line low. The falling edge of

OE1 latches the current position into the on board

 49

memory. Every time this line is taken low, the

encoder always clears the position memory and stores

the current position.

3. After T1, DA appears low. The first instance that

data is available is when DA is low. T1 is not too

much of a concern in the project beyond being a

reasonable time. The biggest concern is getting

both sensors to latch at exactly the same time. The

data read can occur any amount of time after the

latch. A reasonable amount of time for T1 would be

any time less than 100µs. This project does not

require a degree of accuracy in dynamic motion

faster than 10kHz because the MicroStrain sensor is

not able to output faster than 350Hz.[11]

4. Once DA appears, the least significant byte may be

read. D0 corresponds to bit 0 and D7 to bit 7 of

the position.

5. After the read is complete the user must pull OE1

back to high to signal to the encoder the least

significant byte read is complete. After T4 the

data on the line will not be in any particular

state. It is bad data and should not be read. T4

is not a crucial time but is included to indicate

transition time for the data lines, even if the

transition is to useless data.

6. After T2 the user must pull OE2 low. This indicates

to the encoder to place the most significant byte of

the already latched data on the data lines.

 50

7. DA will then transition to low after T4. This

indicates to the user that the upper byte of the

position word is available.

8. The user is then able to repeat the process to latch

and read another value. If OE2 is transitioned low

before OE1 is transitioned low, the data available

will still be the old data. OE2 may be pulled low

and the upper byte data read any number of times

without affecting the data. Although, as soon as

OE1 is pulled low, the data is reset and a new set

of data will be available.

If for any reason the V+ input does not have the

correct voltage and current supplied, the output will not be

correct. The encoder may appear to be functioning correctly

at first, but upon further investigation, it will be found

that the data output is faulty. The v+ of the encoder

requires 5V at 250mA[14] and the data acquisition circuit is

only able to supply 5V at 5mA of current from the DAC. This

means the encoder must be driven by an outside source, or

the constant +5v of the data acquisition circuit must be

used. In this project the constant +5v from the data

acquisition circuit was used.

E. THE PENDULUM

The pendulum is the main source of motion and

connection between the sensors. The pendulum length is

supplied by a half-inch wooden dowel rod which is 43 inches

long. While the dowel rod does contribute more error due to

torsion than metal would produce, the more important factor

 51

is the effect a metal rod would have on the internal

magnetometers of the MicroStrain sensor. The MicroStrain

sensor is connected to the wooden shaft by a plastic

bracket. The combination of the mounting holes and the fact

that the pendulum can rotate its orientation within the Z

axis of the shaft allows the sensor to be placed in every

vertical and upright horizontal orientation possible. The

entire assembly can also be repositioned on its side to

capture horizontal motion of the pendulum ensemble. The

pendulum connects to the encoders by a clamp on the shaft.

This ensures a strong secure connection but at the same time

it allows the pendulum length to be readjusted. Readjusting

the pendulum length will also allow the period to be

altered. Since the MicroStrain sensor is intended to be

used to capture human motion, having the adjustable period

allows the pendulum to simulate different limb’s sections

performing different motions. Photos of the pendulum can be

found in Figure 11.

 52

Figure 11. The Pendulum.

 53

IV. TEST

A. SETUP

This section describes the setup of the system,

concentrating on connections and inter-module

communications. A block diagram of the test system can be

found in Figure 12. The actual setup can be seen in Figure

13.

Figure 12. Block Diagram of Setup of test system.

RS-232

Data
Acquisition
Circuit Encode

PendulumUART

Host
Machine

PC104

3DM-GX1

Output
File

ISA Bus

Motion

Ethernet

Motion

DIO
File Write

 54

Figure 13. Actual Experiment Setup.

1. Ethernet and Associated Setup Procedures

The main form of communication between the host and the

target of this system is an Ethernet connection. At

different points throughout the project the two computers

were either directly connected or connected through a

wireless connection. The wireless connection used was the

IEEE 802.11g. The host was connected directly into a

wireless router and the target PC104 was connected to a

wireless receiver. This connection was set up and used

strictly for demonstration purposes. The connection was

fast enough that program execution was not impeded. The

only purpose of the connection between the host and target

Boot Completion Indicator

Target PC104

Data Acquisition Circuit I/O

16-Bit Encoder

Pendulum

MicroStrain Sensor

Host Machine

Wireless Router

PC104 Hard Drive

 55

is for debugging, console out, and sending the compiled

program to the target for execution. None of the programs

that were tested used the console out in any important

application. It was only used as a debug tool so the speed

would have little impact on program execution.

For testing and data recording the hard connection

between the host and the target was used. This consisted of

a CAT-V crossover cable connection between the Ethernet

ports of both systems. The connection speed used was

100Mbps. At this connection speed and under the demands of

the program, there was little to no disadvantage of running

under a host/target system rather than running strictly

under a target only system.

For the Ethernet connection to be effective and for the

communications to function properly, there were a few setup

procedures that needed to be completed. The main

communications between the two systems occurred because the

QNX Momentics IDE needed to talk with the program executing

on the target PC104. For this communication to be possible,

the PC104 needs a small process to be continuously running

that establishes this communication link. The program

called qconn, developed by QNX, is the small process that

allows this communication. qconn must be running on the

target machine for Momentics to be able to send and execute

compiled programs on the target machine. This process can

be started at anytime after the OS is fully booted.

A second process must also be running in the background

for proper communication between the host and the target.

The process which allows communication between any two QNX

based systems is called phrelay. This process allows remote

 56

login to occur from the QNX developed program Phindows.

Phindows is a Windows based remote login program. It allows

a user to start a totally new session of QNX Photon, the QNX

OS graphical user interface. The session is hosted on the

QNX system but is accessed and controlled by the remote

Windows system. This program is an excellent tool that

allows the PC104 to function as a very powerful remote

embedded system. With this program the user is able to

eliminate the need of a monitor or any direct physical

contact with the PC104, yet at the same time have the

capability to control every aspect of the machine. Remote

file transfer protocol (FTP) communications are also

necessary.

FTP allows the fast transfer of files between two

computer systems. This is necessary for this project

because the PC104 is not powerful enough to do much visual

analysis of the recorded data, especially remotely. The

MATLAB program is also not able to execute on the QNX OS.

MATLAB is a very powerful data analysis tool that is used in

this project. MATLAB will execute on a Windows system, thus

creating the need for a file transfer. The output file that

is stored on the PC104 that contains all the test data can

be transferred to a Windows based system by an ftp file

transfer.

The common UNIX program inetd gives the OS a way to

manage most internet type services and processes. For the

QNX OS to support FTP capabilities, inetd must be a

currently running process. This allows a user to log into

the FTP client of the QNX system from a Windows system. The

command line FTP client on Windows systems is directly

 57

compatible with the QNX FTP client and is accessible when

inetd is running. A second advantage of running this

program is that phrelay is automatically started when the

inetd process is started. When the inetd line is included

in the /etc/rc.d/rc.sysinint system initialization file, the

two processes will automatically start on operating system

startup, allowing instant and automatic FTP and remote

access client access from a remote system. The inetd line

is included in this file directly following the system boot

indicator program discussed previously.

2. RS-232

Serial Communication is the main form of communication

between the MicroStrain sensor and the target PC104.

Communication is performed following the RS-232 standard.

The baud rate is 38.4Kbaud with 8 bits, 1 stop bit, and no

parity. All communication with the sensor is directed

through COM1 of the PC104, I/O address 0x3F8-0x3FF. The

PC104 has a standard 16550 type UART on the micro CPU chip.

The UART has a 16-byte first in first out buffer. The UART

is set to IRQ 4. This means all interrupts associated with

the UART will appear on interrupt request line 4. The

specific setup of the COM1 port is discussed in the

Acquisition Program section.

3. Digital Input/Output

Both encoders communicate with the PC104 through the

digital input/output (DIO) ports of the data acquisition

circuit. All the data is recorded as input to the DIO. The

16-bit encoder actually uses some digital outputs to drive

the output enable lines. The signals are all TTL. 5V

 58

corresponds to logic 1 and 0V is logic 0. When the DIO

ports are read, each port gives an 8-bit number representing

the status of the port.

The 10-bit encoder has no control input so no digital

output from the PC104 is necessary. The encoder is driven

by the analog to digital conversion output “Vout0” on the

data acquisition circuit, pin 29. The program outputs a

constant 5V on this pin. This voltage drives the LED inside

the encoder. The rest of the pin to pin connections can be

seen in table 9.

Table 9. 10-Bit Encoder Pin-Pin Connection Table.

DIO ports A and B must be set as input. Port A when

read will give the complete least significant grey code byte

of data. Only the first two bits of port B must be read.

If all the bits are read then only the first two must be

used. These are the two most significant bits of the grey

code position of the encoder. The two ground pins must be

connected together to establish a common ground. If this is

Pin

DIO A0 1
DIO A1 2
DIO A2 3
DIO A3 4
DIO A4 5
DIO A5 6
DIO A6 7
DIO A7 8
DIO B0 9
DIO B1 10

Vout0 29
Aground 33

8 G0
1 G1
12 G2
10 G3
11 G4
6 G5
3 G6
4 G7
2 G8
9 G9

7 5V
5 ground

Pin Grey Code Bit

Encoder Data Acquisition
Circuit

 59

not connected then the DIO may not read the bits correctly

and the LED in the encoder will not light.

The 16-bit encoder is connected in a slightly different

configuration. The output enable control lines of this

encoder require a 5V TTL signal. Originally, lines OE1 and

OE2 were connected to an analog output of the data

acquisition circuit. The effect of this is discussed in the

Results section. The pin connection can be seen in table

10.

Table 10. 16-Bit Encoder Pin-Pin Connection Table.

Port A and B must be set for input. The entire byte of

data is input through port A. Port B must also be set for

input so “data acknowledge” can be read from the encoder.

It is important for the computer to be able to read the DA

signal. Port C must be set for output. Outputting OE1 and

OE2 on a TTL line is crucial to get correct and accurate

data. The encoder could be driven by a DAC of the data

acquisition circuit at a quick glance, but in reality it is

Pin

DIO A0 1
DIO A1 2
DIO A2 3
DIO A3 4
DIO A4 5
DIO A5 6
DIO A6 7
DIO A7 8
DIO B0 9
DIO C0 17
DIO C1 18
+5V Out 29
Aground 33

1 D0
2 D1
3 D2
4 D3
5 D4
6 D5
7 D6
8 D7
9 DA
10 OE1
11 OE2
14 5V
13 ground

Pin Description Description

Encoder Data Acquisition
Circuit

 60

not possible. The DAC does not supply enough current to run

the encoder without a buffer to supply the extra current.

When the encoder power is connected to the +5V of the data

acquisition circuit enough power is supplied to drive the

encoder.

B. ACQUISITION PROGRAM FOR THE 16-BIT ENCODER

The acquisition program described here will be the

program associated with the 16-bit encoder. The 10-bit

encoder code is similar but the results and methods were not

as accurate as with the following method used with the 16-

bit encoder. The 10-bit encoder program will be described

in a later section. It only describes the differences

between the 10-bit encoder program and the following one.

The flow of the program is one of the most crucial

aspects of the project. Incorrect programming could lead to

inaccurate or incorrect data. The program is split into two

main sections, the main routine and the interrupt service

routine. The data acquisition board initialization, serial

port setup and initialization, file output, and all other

initializations will be described under the main function

section while the DIO and serial port reading will be

explained under the interrupt service routine section.

Sections of code will be described in the following

sections, although the entire program can be found in

Appendix A.

The file control.wse is included in the beginning of

the program. The file is a header file with function

definitions that were used in the program. The file also

contains all the header file inclusions that were used in

 61

the project. This slimmed down the program by writing all

the include statements in a separate file. The control.wse

file was added to for this project. The base variable is

the base address of the data acquisition board and in this

application it is 0x280. All registers of the data

acquisition board are an offset of this address.

1. Main Function

 The main function is where the program first starts

execution. The first section of the main routine consists

of mostly initialization routines. There are many

initializations that must be completed for proper operation

of the system. The first part of the code is seen here:

 51 BoardInit();

 All code here and in the following section, unless

otherwise noted, is taken from Appendix A. This is the

first few lines of the main function. BoardInit() is a

function that is found in control.wse. The code for this

function is seen here:

 46 int BoardInit(void)
 47 {
 48 int privity_err;
 49 privity_err=ThreadCtl(_NTO_TCTL_IO, NULL); // thread gets

root permission at access hardware
 50 if(privity_err==-1)
 51 {
 52 cout<<"can't get root permission";
 53 return -1;
 54 }
 55 out8(base + 0, 0x40); //reset the board, except the DAC output
 56 return 1;
 57 }

This code is taken from Appendix B. Line 49 is the

most important line here. The ThreadCtl function is a QNX

Neutrino specific command. It gives root permission for the

thread to access all I/O functionality. With this line of

 62

code, the program will not be allowed to access any I/O

functionality. Lines 50-54 simply return to the console an

error message if root permission is not attainable. Line 55

is a data acquisition circuit specific register write. This

line writes a 0x40 to the base address which causes the

entire board to be reset. All DIO becomes input, all

counters/timers are stopped, and all registers will be set

to 0. The digital to analog circuitry is the only part of

the board that is not affected. Once the board is reset the

function will return a 1 if successful.

The next set of lines in the main function are seen

here:

 53 out8(base + 11, 0xFE); //set all DIOA DIOB to input DIOClow
Output

 54 SetOEBits(1,1);//OE1 OE2 high

Line 53 sets DIO port A and B to input, sets bits 1 and

4, and the lower nibble of port C to output, set bit 0.

Bits 2,3,5,6,7 do not matter so they are set to 1, giving a

value of 0xFE to be written to the register. When the DIO

line control is changed from input to output for any of the

ports, the respective ports are all pulled low. If the

encoder is attached to the circuit and is currently on, the

encoder will actually take a reading during this time.

However, the flow of operations in this program do not allow

this reading to affect any of the other readings. There

must be careful attention given to this or the encoder may

not produce the correct reading that is requested. The code

for this function is seen here:

 152 void SetOEBits(int OE1, int OE2)
 153 {
 154 out8(base+10,(OE1 + 2*OE2)); //Pulls OE bits in either

direction, 1-high, 2-low, OE1 must be on pin 17, OE2 pin 18
 155 }

 63

This function will receive two integers that must be

either a 1 or a 0 for this function to work correctly. A 1

represents high and a 0 low. When the function is used, the

values sent correspond to what the program requests the

status of bits 0 and 1 of the DIO port C output be set to.

Bit 0 is the first parameter and bit 1 is the second

parameter. In the function, the only code executed is an

output to register base + 10. This register is the DIO port

C status register. Writing either a 0,1,2, or 3, as in this

case, will change the bits 1 and 0 to represent the binary

value of the number sent. This means that the other bits

are all set to 0. In the case of this program there is no

problem because none of the bits excluding 0 and 1 are used.

If these bits are to be used in a different application,

this code will have to be modified to first read the status

of port C, change only bits 0 and 1, and then send the value

back. In this program this code was not included because

this function is executed in the interrupt service routine,

ISR, as well as the main function. The idea is to minimize

code execution in the ISR, therefore the extra code was

decidedly excluded.

The next set of code is seen here:

 56 SerialBit=0;
 57 DataIndex=0;
 58 DataSetSize=1000;
 59
 60 SerComInit();

Lines 56-58 initialize various variables for the

program. This particular set of variables is actually

global variables because they are used in both the ISR and

the main function. They are initialized here to ensure

proper operation. SerialBit is the variable that is used to

indicate where in the receiving serial data packet the ISR

 64

is. This helps to ensure that only an 11 bit package is

taken off the UART buffer at a time. More will be discussed

on this in the ISR section. DataIndex is the current data

set that is being recorded. This is used in the index that

will indicate how many and where the data is currently being

stored in the encoder data and MicroStrain sensor data

arrays. DataSetSize is the desired number of data points to

record. For this project, 1000 data points are enough data

to allow a thorough analysis. Line 60 is the function that

sets up and initializes the UART and RS-232 operation. Seen

here is the actual function code:

 92 void SerComInit(void)
 93 {
 94 out8(sbase + 4, 0x09); //MCR data terminal ready
 95 out8(sbase + 3, 0x83); //enable latch for baud rate set
 96 out8(sbase + 0, 0x03); //lower baud divisor
 97 out8(sbase + 1, 0x00); //upper baud divisor
 98 out8(sbase + 3, 0x03); //disable latch, 1,N,8
 99 out8(sbase + 2, 0x07); //set FIOF to 1 character
 100 out8(sbase + 1, 0x15); //enable recv interrupt
 101 }

A #define statement that establishes sbase is

established at the beginning of the program code file. This

is the base address of the UART. The address for the target

PC104 is 0x3F8. All registers used for setup and

initialization are offsets of this base address. There are

many steps that are required to ensure proper operation of

the UART and proper interface with the MicroStrain sensor.

The modem control register is sbase + 4. This register

control is used for handshake procedures. In the case of

this program, there is no handshake needed because the

sensor does not require any, so the port is set as follows:

Bit 0: 1 – Data terminal is ready for data

Bit 1: 0 – No request to send data

 65

Bit 2: 0 – Option 1, not needed

Bit 3: 1 – Option 2, needed to enable proper interrupt

operation on some PC based systems.

Bit 4: 0 – No loopback, normal operation

Bit 5: 0 – Not used

Bit 6: 0 – Not used

Bit 7: 0 – Not used[15]

The next register that requires setup is sbase + 3.

This register is the line control register and is set up as

follows:

Bit 0: 1 – Word length for traffic is set to either 6

or 8. Bit 1 specifies which.

Bit 1: 1 – Word length of 7 or 8. In conjunction with

bit 0 the word length will be 8. This is

needed because the MicroStrain sensor

outputs 8 bit words.

Bit 2: 0 – Number of stop bits. The MicroStrain sensor

outputs 1 stop bit. This bit must be set

to receive and send 1 stop bit. Since the

word length is set to 8 bits, a 0 in this

bit will indicate 1 stop bit.

Bit 3: 0 – The MicroStrain sensor does not include any

parity in its formatting. Setting this bit

to 0 indicates no parity.

 66

Bit 4: 0 – Not needed because parity is set to 0. This

bit would otherwise indicate even or odd

parity.

Bit 5: 0 – Not needed because parity is 0.

Bit 6: 0 – A 0 does not require a break condition. A

break is not need for this application.

Bit 7: 1 – This gives access to the baud rate counter

latch. If the baud rate is to be set, this

bit must be set to 1. The baud rate is

actually stored in a register that is

mapped to two different locations. The

transmit/receive buffer and the baud rate

divisor least significant byte are both

mapped to register offset 0 while interrupt

enable and the divisor most significant

byte are both mapped to register offset 1.

When this bit is set, the divisor registers

are the registers that are accessible while

the others are not, until this bit is set

back to 0. It is crucial for proper

operation that this bit is set back to 0

before the UART is enabled for

operation.[15]

Since the UART is now mapped to set the baud rate it

would make most sense to set the baud rate. Lines 96 and 97

set the baud rate. The UART has a clock that is set to run

at 1.8432MHz. To get the desired clock rate a divisor must

be used to divide the clock rate to the desired baud rate.

 67

In this case a baud rate of 38.4kbaud is needed. Under the

16550 standard of UART the 1.8432MHz clock is naturally

divided by 16 before the divisor is applied. This means the

clock is 115.2Kbaud if the divisor is 1. A divisor of 3

will result in a baud rate of 38.4Kbaud. This value is

entered into the least significant byte of the baud rate

divisor, sbase + 0, line 96 of the code. The most

significant byte of divisor is 0, which is set in line 97.

Immediately following this instruction, the line control

register, sbase + 3, is again set in line 98. This resets

only bit 7 of the register. It is very important to ensure

all other bits are unaltered as this would change the parity

and the word format. Line 98 writes 0x03 to the register.

The only difference between this instruction and the

instruction previously written in line 95 is bit 7 is

changed to a zero. This will allow the UART to remap the 0

and 1 register offsets back to the transmit/receive buffer

and the interrupt enable register.

Lines 99 and 100 set up the first in first out buffer

control register and the interrupt enable register. Since

the MicroStrain sensor sends data back at the end of its

calculation cycle in a packet of data that has a size that

varies with the type of data, the interrupt will need to be

set when it receives as little as 1 character. If the

interrupt is called for every character, it does not matter

the size of the data packet being sent by the sensor because

the ISR will be able to take all the characters sent one at

a time. The ISR will have to be told how large of a data

packet to expect to ensure each character is placed within

the correct data packet.

 68

It is very important to synchronize the encoder

measurement and the MicroStrain sensor measurement as

accurately as possible. One way for the sensor to

communicate with the encoder is through the interrupt

service routine. If the encoder is read on the last data

character sent by the sensor, it will be possible to

synchronize the two measurements as accurately as possible.

The data packet sent by the sensor in this project is 11

characters long. The first in first out character buffer of

the UART can cause an interrupt on 1,4,8, or 14. The only

value that works for the application in this project is the

1 character setting. This setting, in conjunction with the

ISR knowing which character of the data packet it is

currently receiving, allows the ISR to know exactly when to

take an encoder reading, thus minimizing the time difference

between the encoder reading and the MicroStrain sensor

reading.

The first in first out (FIFO) buffer control register

is initialized in line 99 of the code. The register offset

is 1. The bits are set as follows:

Bit 0: 1 – Enable transmit/receive FIFO.

Bit 1: 1 – Clear the contents of the receive FIFO.

After this is called the value of this bit

will be automatically reset to 0.

Bit 2: 1 – Clear the contents of the receive FIFO.

After this is called the value of this bit

will be automatically reset to 0.

Bit 3: 0 – No change in the transmit/receive mode. The

difference in mode only deals with how the

 69

RXRDY and the TXRDY pins function. These

pins are not used in this project so this

bit will remain unchanged.

Bit 4: 0 – Not used.

Bit 5: 0 – Not used.

Bit 6: 0 – Trigger level for the receive FIFO

interrupt. A 0 here and in bit 7 will

indicate the level 1.

Bit 7: 0 – In conjunction with bit 6 being a 0, the

FIFO will cause an interrupt every time

there is 1 character in the buffer.[15]

In order for the interrupts to actually occur the

interrupt enable register must be set. Line 100 contains

the instruction that will perform this task. The register

offset of 1 is set with the following byte:

Bit 0: 1 – Enable the receiver ready interrupt. This

interrupt will occur if the FIFO has a

character that is ready to be received.

Bit 1: 0 – Disable the transmitter empty interrupt.

Transmit interrupts are not useful in this

application

Bit 2: 1 – Receiver line status register change

interrupt. This interrupt will occur for

various reasons. Data available, parity

error, framing error, and various other

errors will cause this interrupt. If this

interrupt occurs the line status register,

 70

offset 5, will have to be polled to

determine the cause of the interrupt. This

interrupt is never actually used in the

code for the project, but this interrupt

could be used. The ISR will discard any

information that is not correct based on

what data is expected.

Bit 3: 0 – Modem status register interrupt. This

interrupt is not needed since the only

program that will be altering the UART is

this program.

Bit 4: 1 – Sleep mode for a 16750 UART only. This does

nothing in this project.

Bit 5: 0 – Not used.

Bit 6: 0 – Not used.

Bit 7: 0 – Not used.[15]

 Writing the previous byte to sbase + 1 initializes and

starts the indicated interrupts. Any information received

by the UART will now cause an interrupt. The next step of

the program is to ensure the MicroStrain sensor is not

outputting any data and it is not in continuous mode before

the interrupt service routine is enabled. If it were in

continuous mode, the interrupts would start as soon as the

interrupt service routine is attached to the interrupt of

the UART. To maintain full control over the interrupts the

sensor must not be sending data back until the program is

ready to receive the data. Line 61 of the code, under the

main function, is the function that will do this:

 71

 61 StopCONTmode();

The definition of this function is after the main

function and seen here:

 123 void StopCONTmode(void)
 124 {
 125 out8(sbase + 0, 0x10); //Command Command
 126 out8(sbase + 0, 0x00); //Null Command
 127 out8(sbase + 0, 0x00); //Null Command
 128 }

To output characters on the serial line, COM1 serial

port, the characters must be written to the transmit FIFO

buffer. This is accomplished by writing to the base

register of the UART, address sbase. When the character is

read it is then sent out by the UART. Line 125 sends the

“Set Continuous Mode” command over the RS-232 line. This is

then followed by two null commands in line 126 and 127.

This sequence of characters, when received by the sensor,

indicates that the sensor is to stop continuous mode and

listen for a further command, either a polling command or

another command to reenter continuous mode. Polling and

continuous modes are explained in more detail in the

MicroStrain sensor section of this paper.

Continuing in the main function, the next command is

the interrupt initialization function:

 62 ISR4Init();

This function initializes and attaches the interrupt

service routine to the interrupt of the UART. This

interrupt is set to occur on IRQ line 4. This is set in the

BIOS when the target PC104 first starts to boot. The

following code is from the control.wse file:

 361 /* Initialize IRQ 4 handler*/
 362 int ISR4Init(void)
 363 {
 364 isr4handid=InterruptAttach(4,isr4_handler, NULL, 0,

_NTO_INTR_FLAGS_TRK_MSK);
 365 }

 72

ISR4Init() initializes the interrupt service routine

for IRQ 4. Line 364 attaches the interrupt handler

isr4_handler to IRQ 4. Once the handler is attached the

returned value is the ID of the ISR handler. This value is

only used to mask and unmask the interrupt. isr4handid is a

global variable that is declared at the beginning of

control.wse. The ISR handler code follows; it also is

contained in control.wse:

 354 /*IRQ 4 Handler*/
 355 const struct sigevent* isr4_handler(void *arg, int intr)
 356 {
 357 isr4_routine(); //ISR routine
 358 InterruptUnmask(4,isr4handid); //Enable IRQ 4
 359 }

The QNX operating system uses signals to communicate

interrupts. This is why the type definition of the

interrupt handler is sigevent. The first line of the

handler is the interrupt service routine. The code for the

ISR is found in the main code, just above the main function.

Every time an interrupt occurs on IRQ 4, this ISR handler is

executed, which in turn executes the ISR. The last line of

the interrupt handler, line 358, is the unmask command.

This command tells the operating system to unmask all

interrupts on IRQ 4 that are attached to the interrupt

handler with the id in isr4handid. This is the final

instruction that actually stats the action of the interrupts

to be handled by the defined ISR. After this command all

interrupts on IRQ 4 will cause the ISR to execute.

After all the initializations are complete, the program

is ready to start collecting data. This is started in line

64 of the code:

 64 SendInstantEulerAngleCONT();

 73

The definition of this function can be found later in

the code file, and seen here:

 116 void SendInstantEulerAngleCONT(void)
 117 {
 118 out8(sbase + 0, 0x10); //Command command
 119 out8(sbase + 0, 0x00); //Null command
 120 out8(sbase + 0, 0x0E); //Send GYRO Euler Angles command
 121 }

This is the command that actually starts the data

collection. The interrupt service routine is ready to

execute, the serial communication is set up, and the DIO is

ready to record. Line 118 is the “Set Continuous Mode”

command. As indicated previously, this alerts the

MicroStrain sensor to change the output mode based on the

next two characters received. If the mode needs to be

changed, a null command must follow the command. The sensor

now knows that it must continuously output the data the next

command received indicates. Line 120 is the command for the

gyro-stabilized Euler angles. This command indicates to the

sensor to continuously compute and output the gyro-

stabilized Euler angles of the sensor. As soon as the

sensor takes the reading and sends the first character of

data back over the RS-232 line, the UART receives the

character and flags an interrupt, indicating the buffer has

a character to be taken.

Once the sensor is outputting data and the interrupts

are occurring, the only task the main routine is responsible

for is letting the user know the program is still executing.

This is performed by the following code:

 66 while(DataIndex<DataSetSize)
 67 {
 68 if(checksum==dataid+roll+pitch+yaw+timerticks)
 69 {
 70 cout<<"Its good data"<<endl;
 71 }

 74

 72 else cout<<"BAD DATA!!!!"<<checksum<<"
"<<dataid+roll+pitch+yaw+timerticks<<endl;

 73 }

This is simply a while loop that will loop until enough

data has been collected by the interrupt service routine.

The DataIndex variable is incremented every time the

interrupt service routine has received a full set of valid

data. For this application, a valid set of data is a set of

11 characters from the MicroStrain sensor that represent one

set of Euler angles. The checksum is a global variable that

is used to verify the correctness of the data set. This

procedure is explained in the MicroStrain section of this

paper. The if statement verifies if the most recent data

collected is valid. If the data is valid the program will

output to the console “Its good data.” This indicates to

the user that the program is still operating and the data

being collected is valid. If the data is not valid, meaning

all the characters collected do not equal the checksum when

added together, then the console will output “BAD DATA!!!!”

A bad data output to the console could mean the data is bad

for various reasons. The checksum and the character

addition are also output to the console if the data is

invalid. The user is then able to verify why the data is

invalid. When the while loop is exited, the main function

is responsible for stopping all operation and detaching the

interrupt.

 76 StopCONTmode();
 77 InterruptDetach(isr4handid);
 78 FileOutput();

As explained previously StopCONTmode() sends commands

to the MicroStrain sensor that halts all continuous output.

This will also cease the interrupts from occurring on IRQ 4.

Line 77 detaches whichever interrupt handler id is sent to

 75

it. In this code it is the handler id assigned to

isr4handid when the interrupt was initialized. The final

major task performed in the main function is FileOutput().

This function outputs all the data for each sensor in a file

that is capable of being read by MATLAB. The function

definition is seen here:

 130 void FileOutput(void)
 131 {
 132 float myoutf;
 133 FILE* myfile;
 134
 135 myfile=fopen("NewEncoder23.m","w+");
 136 fprintf(myfile,"Encoder=[");
 137 for(int i=0;i<DataSetSize;i++)
 138 {
 139 fprintf(myfile," %d\n",EncoderValue[i]);
 140 }
 141 fprintf(myfile,"]';");
 142
 143 fprintf(myfile,"\n\nMicroStrain=[");
 144 for(int i=0;i<DataSetSize;i++)
 145 {
 146 myoutf=((float)rollnums[i])*360.0/65536.0;
 147 fprintf(myfile," %f\n",myoutf);
 148 }
 149 fprintf(myfile,"]';");
 150 }

This starts by creating a new file. Line 135 opens a

new file with the name in the string parameter. The file

must end with an “.m” to be directly compatible with MATLAB.

The “w+” parameter creates a new file if a file with the

given name does not exist. If the file exists, the file is

opened and its contents are erased. In either case the file

is opened for reading and writing. In this code only a

write operation is performed. myfile is an output stream

leading to the file indicated. The information from the

sensors must be output as an array for easy import into

MATLAB. This means the array must be declared in the file

in such a way that MATLAB will understand. Line 136 is the

start of the array. The string is sent to the myfile stream

 76

which will write it to the file. The for loop continues to

output the encoder data from the encoder data array on the

computer. When the data is completely transferred to the

file, a “]’;” must be output to indicate the end of the

array for MATLAB. The function continues by outputting the

MicroStrain sensor data in the same fashion. The only major

difference is the inclusion of line 146. This instruction

converts the raw data of the sensor into a usable angle.

Since there are 360° in a circle and the sensor has 16-bits

of accuracy, the raw data must first be multiplied by 360

and then divided by 216 or 65536. The Euler angle is then

output to the file. When the encoder data was output in the

same fashion the data was truncated to the 10th’s place for

an unknown reason. This is the reason why only the

MicroStrain sensor data was output. When the data is

imported into MATLAB, the encoder data must be converted to

angles in the same fashion for an accurate analysis between

the two sensors.

The final lines of the main function output “Done” to

the console to indicate to the user the data has been

written to the file, the program is finished executing, and

the data may be analyzed by MATLAB. The last line returns a

1 to indicate successful operation of the function. This is

only included because main is of type int. The code is seen

here:

 79
 80 cout<<"Done";
 81 return 1;
 82 }

 77

2. The Interrupt Service Routine

The interrupt service routine is the function that is

executed every time the associated interrupt occurs. It is

executed by the interrupt handler. This sequence of events

is discussed in the previous section. It is very important

that the interrupt service routine, ISR, execute as quickly

as possible. No extraneous code or unneeded processing must

be performed in the ISR. It has been discovered that the

interrupt service routine, under the specific conditions,

operating system, and PC104 used in this project, must not

contain any floating point operations. Floating point

operations cause the PC104 and the QNX OS to lock up and a

hard reset is needed to continue any further use of the

computer. The reason may be that floating point operations

are very time intensive causing the interrupt service

routine execution time to be large enough that a new

interrupt interrupts its own interrupt service routine.

The basic function of the ISR is to read characters off

the UART receiver buffer, read the encoder after the last

character is received, piece together the corresponding data

from the UART and finally save all data in arrays for each

sensor.

The first lines of the code are here:

 16 int isr4_routine()
 17 {
 18 if(SerialBit<11) SerialBuffer[SerialBit]=in8(sbase + 0);

//read a character off buffer

The basic idea here is that if the index of the

character being received from the UART buffer is less than

11, meaning the full data packet has not yet been received

from the MicroStrain sensor, the character recorded in the

 78

SeriaBuffer array, at the appropriate index. When a

character is read off the buffer the UART interrupt is reset

and waits for another character. Continuing the routine:

 19 if(SerialBit==10) //Get all Encoder Data and calc roll pitch
and yaw

 20 {
 21 SetOEBits(0,1);//OE1 Low
 22 while(in8(base + 9) & 1){}
 23 SetOEBits(1,1);//OE1 High
 24 //1.8us
 25 SetOEBits(0,1);//OE1 Low
 26 while(in8(base + 9) & 1){}
 27 EncoderValue[DataIndex]=in8(base + 8); //read LSB
 28 SetOEBits(1,1);//OE1 High
 29 //1.6us
 30 SetOEBits(1,0);//OE2 Low
 31 while(in8(base + 9) & 1){}
 32 EncoderValue[DataIndex]=EncoderValue[DataIndex]+in8(base

+ 8)*256; //read MSB
 33 SetOEBits(1,1);//OE2 High
 34
 35 calcnewnums();
 36 }

This section of code is where the encoder is latched

and read. It is only executed when all the bytes of the

MicroStrain sensor have been received first; when

SerialBit==10. It is recorded after the last character is

received because the time from the MicroStrain sensor

position latch and the last character output is known. This

means the encoder data can be shifted by a known amount to

match encoder position to MicroStrain sensor position almost

exactly in time. The code above is the recoding sequence of

the 16-bit encoder, as discussed in the section on the

encoder. SetOEBits gives the program a way to indicate

which byte of data is needed and also when to latch the

encoder position. OE1 is actually taken low then high twice

in this code. It was discovered that the value outputted by

the encoder is actually the value that was latched one latch

previous. This means to get the position of the encoder at

the exact time it was read the encoder has to be latched

 79

twice to get the correct data. If the encoder is not

latched twice the data for the current position will not be

outputted until the next read. The data outputted at the

current read will be the data for the position at the

previous read. The reason for this is unknown, however, it

was proven that the data outputted was the previous data

latch’s position. The intermixed while statements poll the

port B DIO looking for DA of the encoder to go low. As soon

as this happens the data on the data lines from the encoder

become valid and may be read. The time between lines of

code seen in comment at line 29 is enough time to satisfy T2

and T3 of the encoder timing diagram. Further delay is not

necessary for the encoder to function properly. The least

significant byte of the position is read first, followed by

the most significant byte. This is the reason the data read

in line 32 is multiplied by 256 and then added to the least

significant byte. The data is stored in the EncoderValue

array. This array holds all the successive encoder

readings. When the encoder is finished reading, the

MicroStrain sensor data is then converted into useable

numbers by calcnewnums(). The code for this function is

seen here:

 103 void calcnewnums(void)
 104 {
 105 dataid=SerialBuffer[0];
 106 roll=SerialBuffer[1]*256 + SerialBuffer[2];
 107 if(roll>=32768) roll=(-1)*(65536-roll);
 108 pitch=SerialBuffer[3]*256 + SerialBuffer[4];
 109 if(pitch>=32768) pitch=(-1)*(65536-pitch);
 110 yaw=SerialBuffer[5]*256 + SerialBuffer[6];
 111 if(yaw>=32768) yaw=(-1)*(65536-yaw);
 112 timerticks=SerialBuffer[7]*256 + SerialBuffer[8];
 113 checksum=SerialBuffer[9]*256+SerialBuffer[10];
 114 }

This function combines and stores the current roll,

pitch, and yaw Euler angles from the MicroStrain sensor in

 80

respective variables. The dataid should be the code for the

data requested. In this case it is 14 or 0x0E. The roll,

pitch, and yaw data most significant bytes and least

significant bytes are combined into one number to represent

each angle in a 16-bit form. The data outputted by the

sensor is in two’s compliment form. The if statement

converts the numbers from a two’s compliment into a signed

integer form for ease of conversion to degrees later.

The interrupt service routine then continues by

increasing the SerialBit variable by 1. This is used to

track the number of characters taken off the buffer for the

current data pack:

 37 SerialBit++;
 38 if(SerialBuffer[0]!=14) SerialBit=0; //reset because of

invalid data
 39 if((SerialBit==11)&&(DataIndex<DataSetSize))
 40 {
 41 SerialBit=0; //rollover for next data set
 42 rollnums[DataIndex]=roll;
 43 DataIndex++;
 44 }
 45
 46 return 1;

 47 }

The if statement in line 38 will reset the data pack if

the first character received is not a 14, or 0x0E. It is

expected that the first character of every new data packet

will be this value because of the standard set by the

MicroStrain sensor. The first set of the data packet sent

will be command code for the data requested. In this

project, the gyro-stabilized Euler angles are requested for

which the command code is 0x0E. If the ISR places any

character other than a 0x0E in the first index of the buffer

array the index is reset. This will happen until 0x0E is

found in the first index of the buffer. At this time, the

 81

ISR knows that it is the start of a new valid data pack and

will allow the index to increment.

Line 39 starts the routine if a complete data packet

has been received. In this case the SerialBit should be 11,

indicating 11 characters were read off the buffer, and the

current data packet index is less than the size of the data

set requested. If the while loop in the main function does

not exit and the interrupt detached, it would be undesirable

for data to continue to be recorded. When DataIndex is

equal to or greater than DataSetSize, the ISR knows that all

the requested data has been processed and recorded; no

further data is needed. Line 42 records the roll angle of

the current reading into the array that will be output to

the file later. Finally, the index of the data is

incremented so when the ISR records the next set of data it

will be placed in the next element of the two arrays. The

ISR returns a 1, meaning the interrupt was processed

correctly.

3. 10-Bit Encoder Program Differences

There were a few differences between the 16-bit encoder

program described previously and the 10-bit encoder program.

The main difference was the data collection method. The 10-

bit encoder program used the polling method of MicroStrain

data collection. This method is useful for a non-

deterministic application, but for this application, the

time between readings needs to be exact. The other

difference was that the encoder was read when the request

for data was sent out. This means the time difference

between the returned data from the MicroStrain sensor and

the encoder reading could be anywhere from 0-13ms of

 82

difference. The sensor would receive the request sometime

during the current calculation cycle and then output that

data. Since there is no way of knowing where in the

calculation cycle the sensor is, there is no way of

determining the time between the encoder reading and the

sensor reading.

Another major difference in the two programs is the

reading method of the encoder. Since the 10-bit encoder

outputs data in a parallel method and there is minimal

calculation time, the data from the encoder can be read all

at once. This means the DIO of the PC104 reads all 10 bits

at once. The 8 least significant bits are on port A and the

2 most significant bits are on port B. The data collected

by the PC104 from the encoder will also have to be converted

before output to the file. This is because the encoder

outputs in grey code. This must be converted to a binary

number and then converted to the final respective degree.

C. RESULTS

Many tests were performed. They included testing the

10-bit encoder at a pendulum length of two feet, 16-bit at

one, two, and three foot lengths, and the pitch and yaw

angles of the 16-bit encoder at a two foot length. The

results were all very similar. There were definite

characteristics present that were expected, but also some

that were newly discovered. All of the results proved the

3DM-GX1 sensor does have the capability of operating within

the specifications put forth by the MicroStrain company,

under the speed conditions tested. A faster moving sensor

may produce a larger error. Since the MicroStrain sensor

and the encoder zero positions do not match, the test was

 83

started at the zero position for the first approximately 100

time samples and then the pendulum was put into motion.

This period of no motion at the zero point allows the

possibility to match the data up, based on this zero

position. When the data is imported into MATLAB the mean of

this rest period is taken for each data set. The mean is

then subtracted from each data point to align the two

sensors around zero degrees. The result of this is two sets

of data that track the same degree position over time.

After this, the error between the two sensors can be

calculated. This procedure is performed for every plot of

the data sets in this section.

 The results from the 10-bit encoder can be seen in

Figure 14.

 84

Figure 14. 10-Bit Encoder and 3DM-GX1 Sensor Results.

The absolute difference is magnified by a gain of 20 in
the plot.

This test was performed by allowing the pendulum to

rest at the zero point for about 100 samples. The pendulum

was then lifted and released by hand. The data collected

with this sensor indicated that the largest error was only

.8507°. This occurred at sample 867. The “Absolute

Difference” is the absolute value of the difference between

the readings of the two sensors for the same sample. The

value is then multiplied by a gain of 20 so it would be

easier to analyze on the same plot as the data. The mean

line is the mean of this difference over the entire sample

set. This line is there for reference purposes of the

 85

difference data. The MicroStrain sensor data in this

example is shifted to the left by one sample. The method of

data sampling used for this data collection does not ensure

that the data matches at each sample period because the

MicroStrain sensor reading is not guaranteed. Polling was

used, so the reading associated with the time sample has the

possibility of being one time sample ahead of the encoder,

in position. This means at time “x”, the encoder was at the

correct position, but the MicroStrain sensor reading at time

“x” could be the reading that was supposed to be associated

with time “x+1” of the encoder. This problem was solved

with the 16-Bit encoder because the data collection was more

deterministic and accurate. Another problem with the data

collected by the 10-Bit encoder is the relation between the

test bench, the encoder, and the MicroStrain sensor.

 The test bench must have 16-bits of accuracy or

better since the MicroStrain sensor has this degree of

accuracy. The limited resolution of the 10-bit encoder is

the cause of the stair characteristic of the zoomed view of

the results plot in Figure 15. This was the motivation to

move to the more accurate 16-bit absolute encoder.

 86

Figure 15. Zoomed View of 10-Bit Encoder and 3DM-GX1

Results.

The MicroStrain sensor was tested at three different

lengths, one foot, two feet, and three feet. All of these

results had very distinct characteristics that were more

well defined in each test. All of the plots from this point

on were generated in MATLAB using the same process. The

major point that must be realized is the shift of the

encoder data.

The data in the 10-bit encoder example was shifted, as

it was for the 16-bit encoder, but the shift in the 16-bit

encoder was much more accurate. The basic process of the

MicroStrain sensor computation is to read all of the

sensors, convert to a digital value, perform Euler

calculations, and finally output on the RS-232 line. This

 87

process repeats continuously as long as the sensor is

powered on and the command signal requests the Euler angles.

The sensor deterministically starts a new calculation every

13.107ms. Therefore, it is known with relative assurance

that at approximately the time the last character of the

data is sent out of the sensor the next calculation is

started. The sensor is read at the beginning of the cycle

and the encoder is latched at this time. Thus, it can be

said with relative assurance that the encoder position is

13.107ms later than the corresponding MicroStrain position,

since This means the encoder position must be shifted back

by 13.107ms to relate the positions at the exact time

instead of the corresponding sensor sample. The position of

the encoder does not have to be estimated at the time which

is 13.107ms in the past, though, because it is known that

the previous encoder position read was exactly 13.107ms in

the past because the calculation cycle time of the

MicroStrain sensor that is driving the data collection is

13.107ms. The un-shifted data can be found in Figure 16.

 88

Figure 16. Un-shifted Encoder and MicroStrain Sensor

Data.

The un-shifted data is the data that is received

without the time correlation shift. It can be seen that the

corresponding data has a gap of one time sample. The 3DM-

GX1 data reaches a certain degree one time sample later than

the encoder data. This time sample is the 13.107ms

difference described earlier. To better analyze this data,

the data must be shifted first.

In this project, instead of shifting the encoder

position back 13.107ms in the past, the MicroStrain sensor

data is shifted to correspond to the encoder data. This is

accomplished by shifting the entire MicroStrain sensor data

one index to the left, effectively matching the currently

 89

calculating sensor position with the encoder position at

that same time. This erases the effect of the calculation

cycle delay at the expense of loosing the first MicroStrain

sensor data point read by the system. Once this data is

matched up by time instead of sample, the data can be

analyzed more accurately. This is exactly what was done in

all of the following examples. The following plots are the

one, two, and three feet test results.

Figure 17. One Foot Pendulum Data. The absolute

difference is multiplied by a gain of 20.

The data in the above plot is the data for the system

when the pendulum is one foot in length. The mean line in

 90

this and all the following plots is the mean of the error.

It was included to serve as a reference point for the error

analysis. Accounting for the fact that the error is scaled

by a gain of 20, is can be seen that the error is above 1°

at various time points. The largest error is 1.3019° at

sample 215. This error is within the specification of the

MicroStrain sensor. The magnitude of the error also follows

the expected pattern. It is expected that when the pendulum

is moving the slowest there should be the least amount of

error. This is because as the pendulum slows down, it

approaches a static state. The static accuracy magnitude of

the sensor is less than 0.5° of error. The position where

the pendulum is the slowest is when it is changing direction

at the extremes. Looking at the above plot, it can be seen

that this is exactly what happens, as the pendulum

approaches the maximum or minimum the error approaches 0.

Another curiosity observed is that the error is

actually almost a direct function of the velocity. This can

be observed in Figure 18.

 91

Figure 18. Zoomed View of One Foot Plot. The velocity

has a gain of 20 and the absolute difference has a gain
of 60.

In this plot, the absolute value of the error is not

taken. The error data is the actual error, this time scaled

by 60, not 20. This scale was used to more closely match

the peaks of the curves. The velocity is the plot of the

velocity of the encoder curve. This was found by taking the

derivative of the encoder curve because velocity is the

derivative of position. The derivative curve in the plot

also has a gain of 20. This was used to match the tops of

the curves so a visual analysis could be performed. In

reality, the derivative curve is much smaller because the

gradient function in MATLAB was used. This plot indicates

that the equation for the error may not be the velocity

exactly, but it is very similar. The exact reason for this

error is not known.

 92

Figure 19. Two Foot Pendulum Data. The absolute

difference is multiplied by a gain of 20.

The two foot plot is very similar to the one foot plot.

This two foot plot can be found in Figure 19. The recorded

max error is much better though. The max error is .7459° at

sample 561. This is again within the specifications for the

MicroStrain sensor. This is most likely because the

pendulum is moving slower. As the pendulum length

increases, the speed of oscillation decreases. Holding the

correlation discovered for the previous test, this is what

 93

was expected; the slower the velocity, the more accurate the

readings. There is one slight difference though. There is

a small camel back at the peaks of all the error curves. A

more pronounced view is seen in Figure 20.

Figure 20. Zoomed View of Two Foot Plot. The velocity

has a gain of 20 and the absolute difference has a gain
of 60.

The camel back could be caused by two possible effects.

It is possible that the acceleration has a small part in the

equation for the error. This would account for the camel

back because at the camel backs, the acceleration is zero.

The acceleration would have to be inversely related to the

velocity. That is, when the velocity magnitude is greater,

the acceleration would have less of an effect. This would

account for the differences between this plot and the plot

of the one foot test. In the one foot test the velocity is

greater, meaning the acceleration has less of an impact.

 94

This would allow the one foot curve to be smooth and the two

foot curve to have a little camel back when the acceleration

is zero.

The second cause of the camel back could be due to the

flexure of the pendulum shaft. The shaft is made from wood

and has a small spring characteristic in it. As the

pendulum swings the shaft may flex slightly. The longer the

pendulum, the larger the flex. The flex would also be

periodic because of the spring like characteristic of wood.

When the wood is flexed in one direction it will reverse the

flex in the other direction when the force holding the flex

is overcome. This motion would create a periodic motion,

which is exactly what the camel back is. If this is the

cause of the camel back, the camel back found here should be

more pronounced in the three foot test, because the pendulum

is longer and has more ability to flex.

The three foot test results can be seen in Figure 21.

 95

Figure 21. Three Foot Pendulum Data. The absolute

difference is multiplied by a gain of 20.

The maximum error for the three foot test is .6820° at

sample 984. Once again, as can be expected, the sensor

error is well within the MicroStrain specifications. The

plot clearly shows the MicroStrain sensor’s position very

closely matches the encoder position for the entire path of

motion. There is some peculiarity in this plot as well

though. In this plot the error data does not seem to have

much correlation to the position at all. It certainly does

not have any correlation to the velocity, as seen in Figure

22.

 96

Figure 22. Zoomed View of Three Foot Plot. The velocity

and the acceleration both have a gain of 20 and the
absolute difference has a gain of 60.

On the above plot, the acceleration was plotted. This

is the second derivative of position and in this plot the

second derivative of the encoder data. A gain was applied

to the curve for visual analysis. A mean filter was also

applied to the curve to make it smoother. The filter took

the average of a point and the one immediate point on each

side of it to create a new point. This process was applied

to every point which resulted in a much smoother curve. It

is very peculiar that error curve for this length is very

similar to the acceleration curve of the pendulum. This is

what was expected though, based on the theories developed

with the one and two foot tests. The differences between

the acceleration curve and the error curve are relatively

small, suggesting a relationship. The differences could be

due to the flexure of the rod as discusser earlier.

The overall results indicate that the error of the

MicroStrain sensor is very likely a function of the

 97

velocity, acceleration, and flexure of the pendulum rod.

The faster the pendulum moves the more influence the

velocity has. As the movement of the pendulum slows, the

acceleration starts to have more of an influence on the

error. The longer the pendulum, the more flexure and

associated error influence. The error from the one foot

test to the three foot test seems to have a logarithmic

property. This could be caused by the changes in factors

influencing the error. This may also be a clue to the

relationship of acceleration, velocity, and flexure to the

error of the MicroStrain sensor. It also indicates the

possibility of the MicroStrain sensor error eventually

becoming larger than the specifications indicate. The exact

point where this may occur is not known because there is no

formula for the error relationship, only clues that could

eventually lead to one. It is also possible that the error

will remain within specifications until the sensor’s motion

moves outside the maximum angular rate specification of the

sensor. At this point it is expected that the error and

other measurements will not be accurate.

 98

THIS PAGE INTENTIONALLY LEFT BLANK

 99

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this project was to develop a control

systems environment complete with encoder capabilities on a

PC104. The system capabilities were tested by using it to

measure the dynamic accuracy of the MicroStrain 3DM-GX1

orientation sensor against the benchmark of an encoder. The

digital input/output and the digital-to-analog conversion

circuits and the RS-232 port of the PC104 were used to

accomplish this task.

In this project, a Diamond Systems Prometheus PC104

with a data acquisition circuit was used as a target

machine. The main encoder used was a 16-bit absolute

encoder by Gurley Precision Instruments. The encoder

communication and control was performed with the digital

input/output circuit. The MicroStrain 3DM-GX1 sensor

communications all occurred through the RS-232 port. The

MicroStrain sensor was attached to the end of a wooden

pendulum and the encoder served as the pivot point of this

pendulum. This allowed the angles of the two sensors to

move synchronously with one another. The pendulum was set

in motion and the position of the two sensors were recorded

and outputted to a MATLAB compatible file.

The results yielded an error of the MicroStrain sensor

well within the specifications established by the company.

The worst error was 1.3019° when the pendulum was at a

 100

length of one foot. It was discovered that the error is a

function of the velocity, acceleration, and flexure of the

pendulum.

B. RECOMMENDATIONS

Further work would be deriving an error equation for

the MicroStrain sensor. This would be useful in any

application that uses this sensor because it may allow the

user to compensate for the error, virtually erasing it. An

encoder board could also be added to the PC104 system to

allow interaction with the incremental encoder and multiple

encoders at once. The system also can be used to test the

dynamic accuracy of other inertia-based orientation sensors.

 101

APPENDIX A: 16-BIT ENCODER C++ CODE

 1 #include <control/control.wse>
 2
 3 #define sbase 0x3F8
 4 int SerialBit,DataIndex,DataSetSize;
 5 int roll,pitch,yaw,dataid,timerticks,checksum;
 6 void SerComInit(void);
 7 void calcnewnums(void);
 8 volatile signed rollnums[100000];
 9 volatile signed SerialBuffer[11];
 10 volatile signed EncoderValue[100000];
 11 void SendInstantEulerAngleCONT(void);
 12 void StopCONTmode(void);
 13 void FileOutput(void);
 14 void SetOEBits(int,int);
 15
 16 int isr4_routine()
 17 {
 18 if(SerialBit<11) SerialBuffer[SerialBit]=in8(sbase + 0);

//read a character off buffer
 19 if(SerialBit==10) //Get all Encoder Data and calc roll pitch

and yaw
 20 {
 21 SetOEBits(0,1);//OE1 Low
 22 while(in8(base + 9) & 1){}
 23 SetOEBits(1,1);//OE1 High
 24 //1.8us
 25 SetOEBits(0,1);//OE1 Low
 26 while(in8(base + 9) & 1){}
 27 EncoderValue[DataIndex]=in8(base + 8); //read LSB
 28 SetOEBits(1,1);//OE1 High
 29 //1.6us
 30 SetOEBits(1,0);//OE2 Low
 31 while(in8(base + 9) & 1){}
 32 EncoderValue[DataIndex]=EncoderValue[DataIndex]+in8(base

+ 8)*256; //read MSB
 33 SetOEBits(1,1);//OE2 High
 34
 35 calcnewnums();
 36 }
 37 SerialBit++;
 38 if(SerialBuffer[0]!=14) SerialBit=0; //reset because of

invalid data
 39 if((SerialBit==11)&&(DataIndex<DataSetSize))
 40 {
 41 SerialBit=0; //rollover for next data set
 42 rollnums[DataIndex]=roll;
 43 DataIndex++;
 44 }
 45
 46 return 0;

 102

 47 }
 48
 49 int main()
 50 {
 51 BoardInit()
 52
 53 out8(base + 11, 0xFE); //set all DIOA DIOB to input DIOClow

Output
 54 out8(base+10,0x03);//OE1 OE2 high
 55
 56 SerialBit=0;
 57 DataIndex=0;
 58 DataSetSize=1000;
 59
 60 SerComInit();
 61 StopCONTmode();
 62 ISR4Init();
 63
 64 SendInstantEulerAngleCONT();
 65
 66 while(DataIndex<DataSetSize)
 67 {
 68 if(checksum==dataid+roll+pitch+yaw+timerticks)
 69 {
 70 cout<<"Its good data"<<endl;
 71 }
 72 else cout<<"BAD DATA!!!!"<<checksum<<"

"<<dataid+roll+pitch+yaw+timerticks<<endl;
 73 }
 74
 75 //stop continuous mode
 76 StopCONTmode();
 77 InterruptDetach(isr4handid);
 78 FileOutput();
 79
 80 cout<<"Done";
 81 return 1;
 82 }
 83
 84 int isr_routine(void)
 85 {
 86 return 0;
 87 }
 88
 89 /*Initialize COM with
 90 * 384000 baud
 91 * 1,N,8 */
 92 void SerComInit(void)
 93 {
 94 out8(sbase + 4, 0x09); //MCR data terminal ready
 95 out8(sbase + 3, 0x83); //enable latch for baud rate set
 96 out8(sbase + 0, 0x03); //lower baud divisor
 97 out8(sbase + 1, 0x00); //upper baud divisor
 98 out8(sbase + 3, 0x03); //disable latch, 1,N,8
 99 out8(sbase + 2, 0x07); //set FIOF to 1 character
 100 out8(sbase + 1, 0x15); //enable recv interupt

 103

 101 }
 102
 103 void calcnewnums(void)
 104 {
 105 dataid=SerialBuffer[0];
 106 roll=SerialBuffer[1]*256 + SerialBuffer[2];
 107 if(roll>=32768) roll=(-1)*(65536-roll);
 108 pitch=SerialBuffer[3]*256 + SerialBuffer[4];
 109 if(pitch>=32768) pitch=(-1)*(65536-pitch);
 110 yaw=SerialBuffer[5]*256 + SerialBuffer[6];
 111 if(yaw>=32768) yaw=(-1)*(65536-yaw);
 112 timerticks=SerialBuffer[7]*256 + SerialBuffer[8];
 113 checksum=SerialBuffer[9]*256+SerialBuffer[10];
 114 }
 115
 116 void SendInstantEulerAngleCONT(void)
 117 {
 118 out8(sbase + 0, 0x10); //Command command
 119 out8(sbase + 0, 0x00); //Null command
 120 out8(sbase + 0, 0x0E); //Send GYRO Euler Angles command
 121 }
 122
 123 void StopCONTmode(void)
 124 {
 125 out8(sbase + 0, 0x10); //Command Command
 126 out8(sbase + 0, 0x00); //Null Command
 127 out8(sbase + 0, 0x00); //Null Command
 128 }
 129
 130 void FileOutput(void)
 131 {
 132 float myoutf;
 133 FILE* myfile;
 134
 135 myfile=fopen("NewEncoder23.m","w+");
 136 fprintf(myfile,"Encoder=[");
 137 for(int i=0;i<DataSetSize;i++)
 138 {
 139 fprintf(myfile," %d\n",EncoderValue[i]);
 140 }
 141 fprintf(myfile,"]';");
 142
 143 fprintf(myfile,"\n\nMicroStrain=[");
 144 for(int i=0;i<DataSetSize;i++)
 145 {
 146 myoutf=((float)rollnums[i])*360.0/65536.0;
 147 fprintf(myfile," %f\n",myoutf);
 148 }
 149 fprintf(myfile,"]';");
 150 }
 151
 152 void SetOEBits(int OE1, int OE2)
 153 {
 154 out8(base+10,(OE1 + 2*OE2));
 155 }

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

APPENDIX B: CONTROL.WSE CODE

 1 #include <cstdlib>
 2 #include <iostream>
 3 #include <stdlib.h>
 4 #include <stdio.h>
 5 #include <iomanip.h>
 6 #include <time.h>
 7 #include <unistd.h>
 8 #include <hw/inout.h>
 9 #include <sys/neutrino.h>
 10 #include <math.h>
 11
 12 #define base 0x280
 13
 14 volatile unsigned nums[100000];
 15 volatile unsigned isrhandid;
 16 int frequency;
 17
 18 int BoardInit(void);
 19 int waitforADconversion(void);
 20 int waitforADsettle(void);
 21 int DAcheckstatus(void);
 22 int SendDAC(int , float);
 23 float GetADVolts(int, int);
 24 int fileoutput(const char* , int);
 25 int Timer0Init(int , int, int);
 26 int Timer0Start();
 27 int SetFIFOThreshold(int);
 28 int ADInit(int,int,int,int,int,int);
 29 int ClearAnalogInterrupt(void);
 30 int ResetFIFOdepth(void);
 31 int isr_routine(void);
 32 int Binary2Dec(int,int);
 33 int* Grey2Binary(int,int);
 34 int* DIO2Grey(int,int);
 35 int PortAin(void);
 36 int PortBin(void);
 37 void SetAllDIO(int);
 38 const struct sigevent* isr4_handler(void*, int);
 39 int isr4_routine(void);
 40 int int4;
 41 volatile unsigned isr4handid;
 42 int ISR4Init(void);
 43
 44 // This must be run to get root permission at access hardware
 45 // It also resets the data aquisition board, everything except the

DAC output
 46 int BoardInit(void)
 47 {
 48 int privity_err;
 49 privity_err=ThreadCtl(_NTO_TCTL_IO, NULL); // thread gets

root permission at access hardware

 106

 50 if(privity_err==-1)
 51 {
 52 cout<<"can't get root permission";
 53 return -1;
 54 }
 55 out8(base + 0, 0x40); //reset the board, except the DAC output
 56 return 1;
 57 }
 58
 59 // This function waits for the AD conversion to happen
 60 // Returns 0 if successful
 61 // Reutrns -1 if timed out
 62 int waitforADconversion()
 63 {
 64 int i;
 65 for(i=0;i<10000;i++)
 66 {
 67 if(!(in8(base + 3) & 0x80)) return 0;
 68 }
 69 return -1;
 70 }
 71
 72 // This function waits for the AD circuit to settle out\
 73 // Returns 0 if successful
 74 // Returns -1 if timed out
 75 int waitforADsettle()
 76 {
 77 int i;
 78 for(i=0;i<10000;i++)
 79 {
 80 if(!(in8(base + 3) & 0x20)) return 0;
 81 }
 82 return -1;
 83 }
 84
 85 // This loops until the DA conversion is completed
 86 // Returns 0 if successful
 87 // Returns -1 if timed out
 88 int DAcheckstatus()
 89 {
 90 int i;
 91 for(i=0;i<10000;i++)
 92 {
 93 if(!(in8(base + 3) & 0x10)) return 0;
 94 }
 95 return -1;
 96 }
 97
 98 // Output a voltage volts on channel chan
 99 int SendDAC(int chan, float volts)
 100 {
 101 int DAlevel;
 102 int DAref=10;
 103 if(volts<-10) volts=-10;
 104 if(volts>10) volts=10;

 107

 105 DAlevel=chan*16384+(volts*2048)/DAref+2048;
 106 out16(base + 6, DAlevel);
 107 DAcheckstatus();
 108 return 1;
 109 }
 110
 111 float GetADVolts(int chan, int gain)
 112 {
 113 int ADvalue;
 114 float voltage;
 115 out8(base + 2, chan*16 + chan); //set the channel range
 116 out8(base + 3, 4*1 + gain); //set scan mode and gain
 117 waitforADsettle();
 118 out8(base + 0, 0x80); //start AD conversion
 119 waitforADconversion();
 120 ADvalue=in8(base + 0) + in8(base + 1) * 256;
 121 if(ADvalue<32768) voltage= .0000152587890625 * 20 * ADvalue;
 122 else voltage=.0000152587890625*20 * ADvalue - 20;
 123 return voltage;
 124 }
 125
 126 int fileoutput(const char* filename, int numsamples)
 127 {
 128 FILE* myfile;
 129 float voltage;
 130 myfile=fopen(filename,"w+");
 131 fprintf(myfile,"Hello=[");
 132 for(int i=0;i<numsamples;i++)
 133 {
 134 if(nums[i]<32768) voltage= .0000152587890625 * 20 *

nums[i];
 135 else voltage=.0000152587890625*20 * nums[i] - 20;
 136 fprintf(myfile," %f\n",voltage);
 137 }
 138 fprintf(myfile,"]';");
 139 return 0;
 140 }
 141
 142 //This function initializes Timer0 with a corrected frequency,

rounding
 143 //up to the next highest divisor of the input clock
 144 //freq is desired frequency, input is clock source, gating will

enable the gating
 145 //input: 0=10Mhz 1=1Mhz;
 146 int Timer0Init(int freq, int input, int gating)
 147 {
 148 long working1,working2,entry; //workingvalues
 149 int hexout[3];
 150 int regstat;
 151 entry=10000000/freq;
 152 frequency=10000000/entry;
 153 for(int i=0;i<3;i++)
 154 {
 155 working1=entry/pow(16.0,2.0*i);
 156 working2=entry/pow(16.0,2.0*i+2);

 108

 157 hexout[i]=working1-256*working2;
 158 }
 159 regstat=(in8(base + 4) & 0x20) / 0x20;//check clock input
 160 if(regstat!=input) //if clock input is not what is desired
 161 {
 162 if(input==1) out8(base + 4, (in8(base + 4)) + 0x20); //set

it to 1Mhz
 163 else out8(base + 4, (in8(base + 4)) - 0x20); //set it to

10Mhz
 164 }
 165
 166 out8(base + 12, hexout[0]); //low value
 167 out8(base + 13, hexout[1]);//mid value
 168 out8(base + 14, hexout[2]);//high value
 169 out8(base + 15, 0x02);//load value
 170 //out8(base + 15, 0x04);//start counting
 171 }
 172
 173 //start Counter0, Timer0Init must be run first
 174 int Timer0Start(void)
 175 {
 176 out8(base + 15, 0x04);
 177 }
 178
 179 //sets the threshold of the FIFO
 180 int SetFIFOThreshold(int depth)
 181 {
 182 out8(base + 5, depth);
 183 }
 184
 185 int ADInit(int lowchan, int highchan, int scan, int interrupt,

int trigger, int gain)
 186 {
 187 int regstat,input;
 188 if(lowchan>highchan) cout<<"Error: The AD high channel is

lower than the low channel"<<endl;
 189 else if((lowchan<0) || (lowchan>15)) cout<<"Error: The AD low

channel is either less than 0 or greater than 15"<<endl;
 190 else if((highchan<0) || (highchan>15)) cout<<"Error: The AD

high channel is either less than 0 or greater than 15"<<endl;
 191 else if((scan<0)||(scan>1)) cout<<"Error: The AD scan value is

invalid"<<endl;
 192 else if((interrupt<0)||(interrupt>1)) cout<<"Error: The AD

interrupt value is invalid"<<endl;
 193 else if((trigger<0)||(trigger>1)) cout<<"Error: The AD trigger

value is invalid"<<endl;
 194 else if(!((gain==1)||(gain==2)||(gain==4)||(gain==8)))

cout<<"Error: The AD gain value is invalid"<<endl;
 195 else
 196 {
 197 out8(base + 2, lowchan+16*highchan); //set the channel

range
 198 out8(base + 3, 4*scan+logf(gain)/log(2.0)); //set the gain

and scan mode

 109

 199 regstat=(in8(base + 4) & 0x10) / 0x10; //check AD trigger
source

 200 if(regstat!=trigger) //if trigger source is not what is
desired

 201 {
 202 if(trigger==1) out8(base + 4, (in8(base + 4)) + 0x10);

//set it to external clock input
 203 else out8(base + 4, (in8(base + 4)) - 0x10); //set it

to Counter0
 204 }
 205 regstat=(in8(base + 4) & 0x01) / 0x01; //check interrupt

enable
 206 if(regstat!=interrupt) //if interrupt enable is not what

is desired
 207 {
 208 if(interrupt==1) out8(base + 4, (in8(base + 4)) +

0x01); //enable interrupt
 209 else out8(base + 4, (in8(base + 4)) - 0x01); //disable

interrupt
 210 }
 211 waitforADsettle(); //let the AD converter to settle out
 212 return 1;
 213 }
 214 cout<<"ADInit Error, program many not execute as

expected"<<endl;
 215 return 0;
 216 }
 217
 218
 219 int ClearAnalogInterrupt(void)
 220 {
 221 out8(base + 0, 0x01);
 222 return 1;
 223 }
 224
 225 int ResetFIFOdepth(void)
 226 {
 227 out8(base + 0, 0x10);
 228 return 1;
 229 }
 230
 231 int ADvalue(void)
 232 {
 233 return (in16(base + 0));
 234 }
 235
 236 int NormADvalue(void)
 237 {
 238 int AD;
 239 AD=in16(base + 0);
 240 if(AD<32768) return AD;
 241 else return (65535-AD)*(-1);
 242 }
 243
 244 int isrSendDAC(int chan, int output)

 110

 245 {
 246 output=output+2048;
 247 if(output>4095) output=4095;
 248 if(output<0) output=0;
 249 out16(base + 6, (chan*16384+output));
 250 DAcheckstatus();
 251 return 1;
 252 }
 253
 254 /* The hardware interrupt handler */
 255 const struct sigevent* isr_handler(void *arg, int intr)
 256 {
 257 isr_routine();
 258 InterruptUnmask(5,isrhandid);
 259 }
 260
 261 int ISRInit(void)
 262 {
 263 isrhandid=InterruptAttach(5,isr_handler, NULL, 0,

_NTO_INTR_FLAGS_TRK_MSK);
 264 return 1;
 265 }
 266
 267 int ISRStop(void)
 268 {
 269 InterruptDetach(isrhandid);
 270 return 1;
 271 }
 272
 273 int CheckFIFOOVF(void)
 274 {
 275 return ((in8(base+3)&0x08)/0x08);
 276 }
 277
 278 /*Convert a binary number into decimal*/
 279 int Binary2Dec(int* Binary,int size)
 280 {
 281 int Decimal;
 282 Decimal=0;
 283 for(int i=0;i<size;i++)
 284 {
 285 //the Binary array member must be referenced by
 286 //*(Binary+i)
 287 Decimal=Decimal+(*(Binary+i))*(int)(pow(2.0,i));
 288 }
 289 return Decimal;
 290 }
 291
 292 /*Convert a grey code number into binary*/
 293 int* Grey2Binary(int* Grey,int size)
 294 {
 295 int* Binary = new int[size]; //this is needed for proper

return
 296 //Fill Binary with all 1's
 297 for(int i=0;i<size;i++)

 111

 298 {
 299 Binary[i]=1;
 300 }
 301 //Start Conversion
 302 Binary[size-1]=*(Grey+(size-1));
 303 for(int i=size-1;i>0;i--)
 304 {
 305 //Grey array must be referenced by *(Grey+i)
 306 if(Binary[i]==(*(Grey+(i-1)))) Binary[i-1]=0;
 307 }
 308 return Binary; //return binary number
 309 }
 310
 311 /*convert the DIO raw number into grey code*/
 312 int* DIO2Grey(int DIO, int size)
 313 {
 314 int* Grey = new int[size]; //this is needed for the proper

return for array
 315
 316 //Strip off bits through masking
 317 Grey[0]=((DIO & 1)==1);
 318 Grey[1]=((DIO & 2)==2);
 319 Grey[2]=((DIO & 4)==4);
 320 Grey[3]=((DIO & 8)==8);
 321 Grey[4]=((DIO & 16)==16);
 322 Grey[5]=((DIO & 32)==32);
 323 Grey[6]=((DIO & 64)==64);
 324 Grey[7]=((DIO & 128)==128);
 325 Grey[8]=((DIO & 256)==256);
 326 Grey[9]=((DIO & 512)==512);
 327
 328 return Grey; //return the grey code
 329 }
 330
 331 /*Reads PortA*/
 332 int PortAin(void)
 333 {
 334 int read;
 335 read=in8(base + 8); //read port A
 336 return read;
 337 }
 338
 339 /*Reads PortB*/
 340 int PortBin(void)
 341 {
 342 int read;
 343 read= in8(base + 9); //read port B
 344 return read;
 345 }
 346
 347 /*Set all the DIO ports to input/output, 1=in 0=out*/
 348 void SetAllDIO(int inout)
 349 {
 350 if(inout==1) out8(base + 11, 0xFF); //make all DIO ports input
 351 else out8(base + 11, 0x00); //Make all DIO ports output

 112

 352 }
 353
 354 /*IRQ 4 Handler*/
 355 const struct sigevent* isr4_handler(void *arg, int intr)
 356 {
 357 isr4_routine(); //ISR routine
 358 InterruptUnmask(4,isr4handid); //Enable IRQ 4
 359 }
 360
 361 /* Initialize IRQ 4 handler*/
 362 int ISR4Init(void)
 363 {
 364 isr4handid=InterruptAttach(4,isr4_handler, NULL, 0,

_NTO_INTR_FLAGS_TRK_MSK);
 365 }

 113

LIST OF REFERENCES

[1] X. Yun and E.R. Bachmann, "Design, implementation, and
experimental results of a quaternion-based Kalman
filter for human body motion tracking," IEEE
Transactions on Robotics, Vol. 22, No. 6, pp. 1216-
1227, December 2006,

[2] D. Churchill, “Quantification of human knee kinematics
using the 3DM-GX1 sensor,” MicroStrain Inc., January
2004.

[3] “Ampro History,” May 2007,

http://www.ampro.com/html/Overview_History.html.

[4] PC104 Consortium, “History,” May 2007,

http://www.pc104.org/history.html.

[5] Prometheus High Integration PC/104 CPU with Ethernet

and Data Acquisition Models PR-Z32-E-ST PR-Z32-EA-ST
User Manual V1.44, Diamond Systems Corporation, 2003.

[6] QNX Neutrino Realtime OS: Kernel Benchmark Mehtodology,

QNX Software Systems Ltd., 2003.

[7] S. Furr, “What is real time and why do I need it?” QNX

Software Systems Ltd., 2002.

[8] S. Arms, “MicroStrain message from the president,” May

07, http://www.microstrain.com/company-overview.aspx.

[9] “3DM-GX1,” May 2007, http://www.microstrain.com/3dm-

gx1_specs.aspx.

[10] 3DM-GX1 Data Communications Protocol, MicroStrain Inc.,

2005.

[11] 3DM-GX1 Orientation Sensor Timer Ticks, Calculation

Cycle and Data Output Rates, MicroStrain Inc., 2006.

[12] CP-300 Series Housed Encoders, Computer Optical

Products Inc.

[13] Optical Encoder Applications, Computer Optical Products

Inc.

 114

[14] Gurley Model A58 Absolute Encoder, Gurley Precision

Instruments.

[15] “Serial UART information,” May 2007,

http://www.lammertbies.nl/comm/info/serial-uart.html.

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Jeffery Knorr, ECE Department Chairman
Naval Postgraduate School
Monterey, California

4. Xiaoping Yun
Naval Postgraduate School
Monterey, California

5. Matthew Feemster
United States Naval Academy
Annapolis, Maryland

6. Douglas Fouts
Naval Postgraduate School
Monterey, California

7. James Calusdian

Naval Postgraduate School
Monterey, California

8. Jonathan Shaver
Naval Postgraduate School
Monterey, California

